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Abstract—Geometric misalignment between Landsat and 

Sentinel-2 datasets, as well as multi-temporal inconsistency 
of Sentinel-2A and -2B datasets, currently complicate multi-
temporal analyses. Operational co-registration of Sentinel-
2A and -2B imagery is thus required. We present a 
modification of the established LSReg algorithm. The 
modifications enabled LSReg to be included in an 
operational preprocessing workflow to automatically co-
register large volumes of Sentinel-2 imagery with Landsat 
base images that represent multi-annual monthly spectral 
average values. The modified LSReg was tested for the 
complete Sentinel-2 archive covering Crete, Greece, which 
is a particularly challenging region due to steep topographic 
gradients and high shares of water in Sentinel-2 tiles. A co-
registration success rate of 87.5% of all images was 
obtained with mean co-registration precision of 4.4 m. 
Mean shifts of 14.0 m in x and 13.4 m in y direction before 
co-registration were found, with maxima exceeding four 
pixels. Time series noise in locations with land cover 
transitions (n = 585) was effectively reduced by 43% using 
the presented approach. The multi-temporal geometric 
consistency of the Sentinel-2 dataset was substantially 
improved, thus enabling time series analyses within the 
Sentinel-2 data record, as well as integrated Landsat and 
Sentinel-2A and -2B datasets. The modified algorithm is 
implemented in the Framework for Operational 
Radiometric Correction for Environmental monitoring 
(FORCE) version 3.0 
(https://github.com/davidfrantz/force). 
 

Index Terms—Sentinel-2; Landsat; Time Series; Geometric 
Accuracy; Co-Registration; Multi-Temporal; Multi-Sensor 

I. INTRODUCTION 
IME series analysis of remotely sensed data enables 
characterization of land cover, land use, as well as long-

term changes therein. Geometric consistency within single 
sensor image time series, as well as between time series 
obtained from multiple sensors is a vital prerequisite for such 
analyses [1].  
Recently, the integration of medium resolution optical sensors, 
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such as Landsat 8 Operational Land Imager (OLI) and Sentinel-
2 (S2) Multispectral Instrument gained traction, posing high 
demands to the geometric pre-processing of individual data 
records, as well as consistency between datasets [2].  
The Collection 1 Tier 1 Level 1 Landsat record systematically 
provides multi-temporal geometric accuracies (< 7 m at worst) 
with absolute geometric accuracy of < 13 m, i.e. less than half 
a pixel [3]. The S2 Level 1C data products currently have a 12 
m multi-temporal accuracy, which means that co-registration 
errors within a pure S2 time series can already exceed a full 
pixel in the 10 m VIS and NIR bands [4]. The expected 
geometric error between Landsat and S2 data currently amounts 
for up to 38 m, which further underlies geographic variation due 
to varying quality of the Global Land Survey 2000 ground 
control [5]. These geometric inaccuracies superimpose 
challenges for single-sensor and particularly multi-sensor time 
series analyses. Lacking image-level metadata on geometric 
accuracy in S2 data adds to the uncertainty on the user side.  
Improvements on the absolute geometric accuracy and multi-
temporal co-registration of both S2 sensors are expected upon 
the release of the global Geometric Reference Image (GRI) by 
the European Space Agency (ESA), which is assumed to reduce 
the multi-temporal error to less than 0.3 pixels at 95% [6]. 
Unfortunately, the release of the GRI has been repeatedly 
delayed, re-processing of past S2 data is currently not planned, 
and the expected global geo-registration accuracy needs to be 
confirmed in an operational setting. Time series analysis in 
world regions with inconsistencies in image geometry thus 
require operational means to remove pixel and sub-pixel 
inconsistencies between S2 and Landsat data, and within S2 
data before the release of the GRI [7].  
Numerous approaches for automated tie point detection and co-
registration of Landsat and S2 datasets were presented recently, 
most of them reporting substantial inter- and intra-sensor 
geometric mismatches [2, 7–10]. Current automated image co-
registration techniques frequently rely on area-based 
correlation or Fourier-based matching techniques for automated 
tie point detection [10, 11]. Subsequently, affine or polynomial 
translation functions, or Random Forest regressions [10] are 
determined as translation functions based on the respective set 
of tie points.  
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The Harmonized Landsat Sentinel Product [2], for instance, 
was created using a modification of the Automated  
Registration  and  Orthorectification  Package (AROP) [12], 
which used a two-layer hierarchical approach with tie point 
detection and cross-correlation matching on each layer with 
different spatial resolutions. The Landsat Sentinel Registration 
(LSReg) algorithm [9] constructs a four-layer hierarchical 
structure, using a feature-based initial tie point detection on the 
top layer (lowest resolution) followed by area-based least 
squares matching [13] on every hierarchical layer, and locations 
matched on all layers are identified as tie points. The 
hierarchical structure of the LSReg algorithm makes it 
computationally efficient, and the least squares matching 
provides higher sub-pixel geometric accuracy than the cross-
correlation matching [14]. In addition, the least squares 
matching in LSReg uses the spectral-angle-mapper similarity 
measure, which makes it more suitable to account for inter-
sensor differences between spectral bands, more robust to 
reflectance brightness variations, and enables improved multi-
temporal consistency as compared to classic correlation-based 
least squares matching approaches [9]. Thus, we chose to adapt 
LSReg, and specifically tuned the algorithm for operational and 
fully automated geometric co-registration of S2A/B time series 
to selected Landsat base images. Emphasis was particularly put 
on the selection of suitable base images, which can be 
complicated due to seasonal land surface changes and cloud 
cover, as well as parameter tuning for finding enough tie points 
in target S2 images that do not contain much valid data. 

II. STUDY AREA AND CHALLENGES 

The island of Crete in Greece was chosen for developing and 
testing the approach (Fig. 1). Crete is a particularly challenging 
region for geometric correction for two reasons. First, a high 
proportion of open ocean in the individual S2 tiles reduces land 
area available for tie point detection. Further, the presence of 
waves on open water regularly results in white-caps with high 
reflectance and contrast that tend to be detected as initial tie 
points. These effects either reduce the number of tie points or 
trigger the occurrence of pseudo tie points in LSReg, which in 
combination can lead to distortion during geometric correction. 
Second, Crete has a strong topographic gradient, with steeply 
rising terrain reaching elevations of about 2,500 m.  
 

 
Fig. 1.  Study area and Sentinel-2 tiles. 

III. DATA & METHODS 

A. LSReg 2.0 
We used version (2.0) of the LSReg algorithm [9]. Different 
from the original algorithm, version 2.0 performs an additional 
step of dense point matching on the bottom hierarchical layer 
(highest resolution) to provide more tie points for a better fit of 
the transformation functions between co-registered images. 
LSReg requires only few inputs. First, an image needs to be 
designated as the base for co-registration. Second, a target 
image to be co-registered with the base image, is specified. 
Third, the type of transformation needs to be selected. The tie 
point matchings are conducted using the near-infrared (NIR) 
bands that provide high contrast across land cover types and 
reduced sensitivity to atmospheric effects [9, 10]. The LSReg 
2.0 algorithm does not undertake cloud masking prior to image 
co-registration. Further details on the original algorithm can be 
found in [9]. 

B. Modifications 
We implemented several refinements to adjust the LSReg 
algorithm for operational co-registration of S2A/B with 
Landsat-8 images. First, we increased the spatial resolution of 
the depth-first matching pyramid layers from 10, 30, 60, 120 m 
to 10, 20, 40, 80 m. This will effectively lead to more potential 
tie point locations in images with large shares of water and in 
images where only a small part of a S2 data take is intersecting 
the tile. Moreover, the sampling step for dense matching 
(highest resolution) was modified to depend on the number of 
valid land pixels (no cloud, water, or no data), instead of 
considering the whole image dimension. This change results in 
a potentially higher abundance and density of tie points in case 
the land share in an image is low, or if the image only includes 
a small part of the S2 data take. 
Second, LSReg 2.0 does not have hard co-registration failure 
criteria, i.e. the code does not abort with an error message, but 
only issues a warning that the co-registration might have failed. 
In this case, manual inspection is recommended. However, for 
operational implementation into a full processing chain, failure 
criteria are necessary that stop the execution of the code 
automatically. Thus, we identified a number of criteria for early 
termination of the complete processing chain, i.e. if there are 
less than 12 matched tie points, and if the predicted image shift 
is larger than 6 pixels, i.e. 60m. 
Third, we increased the threshold for water masking from 5% 
to 10% NIR reflectance to avoid false detection of tie points on 
waves and white-caps, which frequently happened with LSReg 
2.0 over the open ocean and resulted in a large number of tie 
points with arbitrary shift vectors.  
Fourth, as suggested by [9], we considered only affine 
transformation, as its performance was shown to be comparable 
to polynomial transformations in earlier experiments [9, 11], 
and as it was found to be more robust, especially if the tie points 
were not distributed across the complete image extent, e.g. due 
to clouds or higher water shares at either side of the image. 
Furthermore, the affine transformation has been demontrated to 
perform well on Landsat and Sentinel 2 images that were terrain 
corrected [7, 9]. 
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Fifth, we performed the co-registration subsequent to cloud 
masking in order to increase its computational efficiency in an 
operational setting. 
The modified LSReg is completely integrated into the FORCE 
Level 2 Processing System [15, 16], thus co-registration is now 
a feasible option in its fully automatic preprocessing chain. The 
module is implemented between cloud masking [17] and 
radiometric correction [15], thus the co-registration benefits 
from excluding clouds and cloud shadows. In addition, FORCE 
uses an integrated radiometric correction that both corrects for 
atmospheric and topographic effects. The latter correction 
especially benefits from the prior improvement of the geometric 
accuracy as it substantially improves the alignment between S2 
and the Digital Elevation Model to perform this correction and 
thus reduces correction artefacts, e.g. around crests. 

C. Compilation of base images 
We aimed at matching the geometry of the Landsat Collection 
1 Tier 1 data record, due to its superior geometric consistency, 
until the release of the S2 GRI. Furthermore, this increases 
consistency in retrospective time series analyses in cases where 
historic Landsat archives are combined with contemporary S2 
images.  
The crucial step of selecting suitable base images offers several 
options. First, a base image without much change relative to all 
target images can be selected for co-registering multiple target 
images. While this method facilitates the base image selection, 
it requires manual intervention and does not account for 
seasonal variations in reflectance, which might lead to an 
insufficient number of matched tie points [12]. Second, a 
selection of individual base images with acquisition dates 
proximate to the acquisition of the target images may be 
considered [10]. While this mitigates seasonality-related 
challenges, the labor-intensive selection of suitable images, and 
the possibility of no cloud-free base image being available for 
a specific year are drawbacks. Third, chain correction could be 
applied where a single base image is defined to correct one 
target image, which then serves as a base image for the 
temporally neighboring image in the time series. This method 
should be used cautiously, as errors are likely to propagate, 
which may cause systematic shifts in co-registered image time 
series.  
We therefore present an alternative approach that uses monthly 
Landsat spectral average metrics as base images. To achieve 
near gap-free coverage, we accumulated all Landsat OLI 
acquisitions for the five-year period from 2015 to 2019 and 
calculated monthly mean NIR reflectance images for January 
through December. The seasonality of land surfaces is thereby 
mitigated, providing a near gap-free base image for each month.  

D. Target images: Sentinel-2A/B image time series 
We aimed at co-registering all available S2A and -2B L1C 

images covering Crete across seven tiles (Fig. 1). We only 
downloaded images with a cloud cover below 70% as indicated 
by the metadata catalog, resulting in a total of 1,739 images in 
the time period between July 2015 and end of December 2018. 
The L1C images were processed to Level 2 Analysis Ready 
Data using the FORCE Level 2 Processing System with the 
incorporated co-registration module as outlined above. The 
cloud detection module additionally identified 23 images with 

a cloud cover larger than 90%, which serves as termination 
criterion for the cloud masking [15]. 

E. Evaluation of co-registration performance 
We evaluated the performance of the modified LSReg by 
calculating the rate of successfully co-registered images, the 
number of tie-points used for co-registration, model RMSEs, 
absolute image shifts, as well as the noise in original and co-
registered NDVI time series. For the latter, we collected 585 
pixel locations at the borders of land cover transitions, 
dispersed across Crete. For each coordinate, we derived noise 
across the respective NDVI time series by using three 
successive measurements 𝑦𝑦𝑖𝑖, 𝑦𝑦𝑖𝑖+1, and 𝑦𝑦𝑖𝑖+2 acquired at dates 
𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖, 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖+1, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖+2. We quantified the differences 
between the center NDVI and the linear interpolation between 
the two outer measurements as follows [18]:  
 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  �
∑ (𝑦𝑦𝑖𝑖+1− 

𝑦𝑦𝑖𝑖+2−𝑦𝑦𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖+2−𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖

(𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖+1−𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖)−𝑦𝑦𝑖𝑖)²𝑛𝑛−2
𝑖𝑖=1

𝑁𝑁−2
 (1) 

IV. RESULTS AND DISCUSSION 

We applied the co-registration to 1,716 S2A/B images using the 
modified LSReg algorithm, yielding 1,501 co-registered 
images, i.e., a success rate of 87.5%. The mean RMSE of the 
co-registration was 0.44 pixels at 10m resolution (Fig. 2 top 
left) and the number of automatically identified tie points for 
the co-registered images ranged between 1,219 and 106,359 
with a mean of 16,290 (Fig. 2, top right).  
 

 
Fig. 2.  Model RMSE (top left), number of tie points detected per image (top 
right), scatterplot of percentage water cover and cloud cover for failed (red) and 
successfully co-registered images (grey) (bottom left), density plot of absolute 
image shifts performed during co-registration (bottom right). 
 
The co-registration failed for 215 images. An inspection of 
these images’ characteristics revealed that those had low data 
coverage in the S2 tiles, high shares of water, high cloud cover, 
or the combinations thereof. This reduced the area of cloud-free 



GRSL-01419-2019.R1 

land observations available for tie point matching and thus too 
few tie points for co-registration (Fig. 2, bottom left).  
Mean image shifts between base and target images before co-
registration were 14.0 m (standard deviation: 6.9 m) and 13.4 
m (standard deviation: 11.3 m) in x and y direction, 
respectively. Maximum image shifts were 46.2 in x, and 59.6 m 
in y direction, and were confirmed by examining associated 
image pairs. A general tendency for North-West shifts was 
apparent (Fig. 2, bottom right).  
The determined geometric shifts in the S2 time series ranged up 
to six pixels and thus exceeded previously observed shifts [9, 
10]. These inconsistencies in the original time series caused 
spectral variability due to alternating land cover types, partly 
exceeding the seasonal variability, which hamper analyses of 
dense image time series, e.g., for capturing land surface 
phenology (Fig. 3). Co-registration drastically improved the 
consistency of the time series (Fig. 4), with average time series 
noise being reduced by 42.9%, from 0.086 (standard deviation 
= 0.029) in the unregistered to 0.049 (standard deviation = 
0.018). In 21 locations, slight increases in noise were apparent  
(mean < 0.008), which relate mostly to the fact that the time 
series were dynamic but clear observation were relatively 
sparse. 
 

 
Fig. 3.  NDVI time series of Sentinel-2A (red) and -2B (blue) data before (top) 
and after (bottom) co-registration procedure. Pixel location alternating between 
open and dense tree canopies at latitude / longitude: 35°34.57737' / 24°8.40115'. 
 

 
Fig. 4.  Scatterplot of noise in Sentinel-2 NDVI time series (left) before (x-axis) 
and after (y-axis) co-registration. Boxplot (right) comparing distribution of 
noise in original against co-registered time series. Time series noise  was 
quantified for 585 manually selected pixels located at boundaries of different 
land cover types throughout Crete. 
 
The presented approach is highly automated and thus suitable 
for large-area applications. It operates without manual selection 

of suitable base images through the use of Landsat-based multi-
year spectral averages. While mitigating challenges related to 
seasonal reflectance variation, the procedure does not account 
for inter-annual variation in reflectance due to land cover 
change that might occur in the five-year period used to generate 
the mean NIR data. However, similar to the occurrences of 
clouds, the occurrences of land cover changes only reduce 
matched tie points at locations of the occurrences (recall that 
the original LSReg algorithm does not undertake cloud 
masking). Given the fact that dense point matching was 
conducted in LSReg 2.0 and we obtained a mean of 16,290 tie 
points per co-registered image pair, the issue of land cover 
changes was not found to be a problem. Nevertheless, the 
aggregation period (here five years) for the generation of the 
Landsat-based base images can be adapted flexibly. In 
deforestation frontiers of tropical evergreen forests, for 
instance, low seasonal variability coincides with high rates of 
land cover change. In such cases, the overall time frame should 
be narrowed down.  
The upcoming Landsat Collection 2 will be geometrically 
adjusted to the S2 GRI [19], and forthcoming S2 acquisitions 
will use the GRI for geo-correction. Consequently, a high 
geometric consistency of integrated Landsat and S2 time series 
can be expected for GRI-corrected data. However, co-
registration will be needed for using post-Level 1 S2 data until 
the entire S2A and 2B archive has been reprocessed and the 
geometric quality targets have been confirmed globally in an 
operational setting. 

V. SUMMARY 
We presented a modification of LSReg 2.0, which enables the 
operational geometric co-registration of S2-A/B images based 
on multi-temporal Landsat spectral-temporal metrics. The 
approach allows for automated sub-pixel co-registration under 
challenging conditions, overcoming issues of low data or land 
coverage in satellite products, topographic gradients, as well as 
seasonality. The described modifications of the LSReg 
algorithm as well as the generation of Landsat base images are 
implemented in the free and open source software FORCE 
version 3.0 (https://github.com/davidfrantz/force). 
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