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Abstract

Vegetation phenology has a great impact on land-atmosphere interactions like carbon cycling,
albedo, or water and energy exchanges. To understand and predict these critical land-
atmosphere feedbacks, it is crucial to measure and quantify phenological responses to climate
variability, and ultimately climate change. While a wide range of mechanistic phenological
models have been applied to estimate key phenological parameters, it has been shown that these
models fail to predict interannual variability in land surface phenology measured from global
satellite archives. It is therefore necessary to improve our understanding of how phenological
models relate to land surface phenology measured from various spaceborne remote sensing
sources.

In this study, we analyzed the potential of multi-sensor, medium resolution time series for
estimating spring phenology of broadleaf forests across Germany. We combined dense time
series of Sentinel-2, Landsat 7, and Landsat 8 acquired in 2017. We fitted two phenological
models, logistic models and generalized additive models, using Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) time series at 12,420 sampling
sites, and compared their suitability for representing phenology across our study area. We
further evaluated our estimates against state-of-the-art mechanistic models calibrated using
literature-based species parameters and in-situ observations of leaf unfolding. This comparison
also allowed to characterize the spatial variability in the drivers of spring phenology.

Our results show that estimates of spring phenology are feasible for single years by integrating
multi-sensor time series. They also show, though, that the choice of vegetation index can have
a strong impact on predictability. EVI time series outperformed NDVI time series in logistic
models and generalized additive models across the study area. Moreover, results indicate that
comparability of ground observations of leaf unfolding and start of season (SOS) estimates on
landscape scales is limited. We further found that current mechanistic models were not able to
reproduce spatial variability of SOS estimates. Local variations in thermal forcing, chilling and
other environmental drivers such as built-up area and elevation explained large shares of
differences between SOS dates from Landsat and Sentinel-2 time series and mechanistic
models. The results underline the need for a better representation of spatial variability of spring
phenology in process-based phenological models. The study shows that dense medium
resolution time series from integrated Landsat and Sentinel-2 data can be used to advance our
knowledge of phenological dynamics and their drivers across broader spatial scales. This is
especially important in the light of climate change and increasing climate variability which

impact phenology of forest ecosystems globally.



1 Introduction

In the last decades, it became evident that climate change has severe and diverse influences on
ecosystems globally, encompassing spatial shifts of species ranges but also temporal shifts of
phenological events (Jeong, Ho, Gim, & Brown, 2011; Parmesan & Yohe, 2003; Rosenzweig
et al., 2008). A substantial body of research suggests that climate change, through warming,
will extend the growing season of forests by facilitating earlier leaf unfolding in spring (Crabbe
et al., 2016; Friedl et al., 2014) and changing dynamics of leaf senescence in autumn (Fu et al.,
2018; Gill et al., 2015). In Europe, spring onset has advanced by approximately 2.5 days per
decade in the last decades of the 20" century (Menzel et al., 2006). Therefore, vegetation
phenology, the study of the timing of seasonal plant development through phases of active
growth and dormancy (Hénninen, 1990), is a suitable and widely used indicator to measure
impacts of climate change on ecosystems (Parmesan & Yohe, 2003; Rosenzweig et al., 2007).
The consequences of a changing phenology on forest ecosystems are manifold. In addition to
altering tree species distribution and ranges (Chuine, 2010; Chuine & Beaubien, 2001), changes
in phenology are expected to impact ecosystem services such as the carbon uptake of temperate
and boreal forests negatively (Han, Wang, Jiang, Fischer, & Li, 2018; Piao et al., 2008). In this
regard, changing dynamics of spring and autumn phenology have received considerable
attention in the field of phenological studies since these parameters determine growing season
length which is a key factor controlling, e.g., ecosystem productivity (Crabbe et al., 2016;
Richardson et al., 2010).

1.1 Phenological mechanisms of temperate broadleaf forests

Differences in phenological dynamics are often attributed to changing impacts of various
environmental drivers such as temperature, photoperiod, and precipitation at different sites and
points in time (Basler & Korner, 2012; Fu et al., 2018; Yun et al., 2018). However, there still
is uncertainty about the influence of the different drivers on phenological responses of forests.
While it has been widely assumed that a warming climate will extend the growing season in the
future, by advancing spring leaf unfolding and delaying autumn senescence, a number of studies
found contrasting evidence. Recently, a decrease in the sensitivity of leaf unfolding to warming
has been detected in broadleaf tree species (Fu et al., 2015). Moreover, several studies (e.g.
Chuine et al., 2016; Cook, Wolkovich, & Parmesan, 2012; Dantec et al., 2014; Fu et al., 2015)
argue that chilling has been an underestimated factor in most phenological studies and models:
Unfulfilled chilling requirements in certain tree species caused by warmer temperatures during

winter can counterbalance early leaf-out dates induced by spring warming. The same might be
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true for photoperiod, which has an increasing impact on spring phenology when leaf unfolding
advances further. These factors are considered to become more important under future climate
change and are not sufficiently represented in current phenological models (Chuine et al., 2016;
Fu et al., 2015; Garonna et al., 2018). The underlying physiological plant mechanisms are not
fully understood either. Adding to this, it has been suggested that daytime temperatures exert
stronger controls than nighttime temperatures on both, spring and autumn phenology and
should therefore be considered in future studies (Fu et al., 2016; Piao et al., 2015; Wu et al.,
2018). Overall, it still remains challenging to conclude which environmental cues drive

temperate forest phenology at which sites and to what extent.

Not all mechanisms and underlying processes related to phenological dynamics are understood
in detail yet. However, it is known that the phenological cycle of temperate trees consists of
different phases of active growth and dormancy to facilitate plant development during favorable
environmental conditions and to ensure survival during temperatures below 0°C (Delpierre et
al., 2016; Perry, 1971; Rohde & Bhalerao, 2007). In this study, we look specifically at spring
leaf phenology of temperate broadleaf trees. Other plant parts of temperate and boreal trees also
undergo a phenological cycle, e.g., wood, needles, fine roots and fruits which are, like leaves

and flowers, sensible to environmental conditions (see e.g. Delpierre et al., 2016).

During late summer to early autumn, growth cessation is initiated in trees by different factors
such as photoperiod, low temperatures and drought (Rohde & Bhalerao, 2007). In this time,
broadleaf trees grow new buds which then go through different phases of dormancy, described
e.g. by Perry (1971) and Lang, Early, Martin, & Darnell (1987): Firstly, paradormancy is a state
where growth is inhibited not by the bud itself but signalized through other plant organs. After
paradormancy, trees enter into endodormancy, where the perception of environmental or
endogenous factors inhibiting growth appears within the buds themselves. To break
endodormancy, the tree must be exposed to a certain amount of chilling temperatures,
depending on tree species. Budburst occurs later in species with a higher chilling requirement
and deeper rest, whereas tree species with a lower chilling requirement tend to start growth
earlier. With spring warming, this delayed effect of chilling on budburst is expected to cause
stronger advances of season onset in species with a low chilling requirement and smaller effects
on species with a higher chilling requirement (Hénninen, 1990). Endodormancy break and
transition into ecodormancy usually take place in late winter to early spring. During this last
dormancy phase, unfavorable environmental conditions signal a growth restriction and prevent
further development i.e. bud growth (Basler, 2016; Horvath, Anderson, Chao, & Foley, 2003).
Because of a direct dependency of bud development on temperature, the rate of cell division
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and bud growth is increasing with rising temperatures. The transition between different phases
of dormancy are gradual and can be different among species, individuals and even buds of the
same tree. After a sufficient amount of forcing temperatures have accumulated, bud break and
leaf unfolding start (Dantec et al., 2014; Perry, 1971). Moreover, photoperiod has an effect on
the timing of budburst of different species which could alleviate advancing budburst dates with
climate warming (Basler & Korner, 2014; Linkosalo, Carter, Hakkinen, & Hari, 2000). It has
been shown that chilling and forcing requirements are species-specific (Chuine, 2000) but also
vary between individuals of the same species (Kramer et al., 2017). These intraspecies

differences can mainly be explained by genetic variations (Wesotowski & Rowinski, 2006).

While genetic variations have to be considered as a factor driving spatial variability (Liang,
2016), other environmental gradients, mostly tied to temperature gradients, are known to impact
spatial differences of spring phenology. Higher elevations are associated with lower
temperatures and therefore later occurrence of leaf unfolding and green up. Accordingly,
several studies found a delay in spring phenology with increasing elevation (Cufar, De Luis,
Saz, Crepin§ek, & Kajfez-Bogataj, 2012; Richardson, Bailey, Denny, Martin, & O’Keefe,
20006; Senf, Pflugmacher, Heurich, & Krueger, 2017). Besides, there is evidence, that elevation
gradients differ among species (Hufkens, Friedl, Keenan, et al., 2012). However, Vitasse,
Signarbieux, & Fu (2018) found that spatial variability of spring phenology decreased along
elevation gradients. This was caused by opposing effects of spring warming on the fulfillment
of chilling requirements at different elevations. In addition to elevation, urban heat islands are
advancing spring phenology and extending the growing season of vegetation in the cities as
well as in surrounding areas. Phenology along the urban-rural gradient has gained increasing
attention in the last years with various studies targeting urban areas in, e.g., North America (X.
Li et al., 2017; Melaas, Wang, Miller, & Friedl, 2016; Zipper et al., 2016), Europe (Dallimer,
Tang, Gaston, & Davies, 2016) and Asia (Zhou, Zhao, Zhang, & Liu, 2016).

1.2 Research approaches of phenological studies

Two different research approaches are apparent within the study area of phenology. One
approach relies on in-situ observations, which are used in process-based phenological models.
The other approach uses remote sensing data to measure land surface phenology directly

(Fisher, Richardson, & Mustard, 2007).

Comprehensive ground observations of phenological events have been registered throughout

Europe since the 1950s. Over 12 million records are accessible through the PEP725 database,



which represents a valuable data source. It has been used in a variety of different studies related
to, e.g.,, climate change and variability and the sensitivity of phenology to various

environmental drivers (see Templ et al., 2018).

To explain and predict phenological responses to current and future climate, mechanistic (also
“process-based””) models take different combinations of drivers of phenology such as chilling
and forcing temperatures, photoperiod, and vapor pressure into account to estimate leaf
unfolding in spring (Basler, 2016). Most simple models, such as the Thermal Time model and
the Sequential model make use of the concept of growing degree days (GDD) and chilling days
(CD) (Chuine, Cour, & Rousseau, 1999). These parameters represent species- and possibly site-
specific (Kramer et al.,, 2017) forcing and chilling requirements which determine
endodormancy and ecodormancy break, respectively. Daily or hourly mean temperatures are
used to assess the state of chilling and forcing accumulation during autumn, winter, and spring
prior to the growing season (Chuine et al., 1999). These models are commonly calibrated with

phenological ground observations (e.g. Basler, 2016; Linkosalo, Lappalainen, & Hari, 2008).

Basler (2016) compared and evaluated most common mechanistic phenological models and
found that model performance was overall very similar, despite different model complexities
and environmental drivers included in the model. Moreover, most of the models tended to
underestimate inter-annual variability and errors increased when very late or early leaf-out dates
were evident. In line with these results, Richardson et al. (2012) and Keenan et al. (2012) found
that inter-annual variation of phenology was not sufficiently represented in terrestrial biosphere
models and caused differences between modeled and observed terrestrial carbon fluxes. Model
errors were especially large for the broadleaf forest type. This shows that current phenological
models are not likely to represent phenology well under future climate conditions and need
improvement to correctly express corresponding biosphere-atmosphere interactions. Recently,
Wang et al. (2018) used remotely sensed phenology to improve modeling of gross primary
productivity in Chinese forests. While ground observations have been the main source for
calibrating process-based models locally, the potential of remote sensing data to calibrate these
models to enable spatially and temporally flexible phenology estimates has not been exploited

yet.

In recent years, remote sensing data have been used to measure land surface phenology (LSP)
directly. LSP describes the biophysical dynamics of vegetation connected to its annual cycle of
development and dormancy as measured by remote sensing (White & Nemani, 2006). Ground

observations are visual interpretations of plant development by a human interpreter whereas



LSP is derived by analyzing the spectral information from a certain sensor which includes
signals of the complete vegetation cover and background (e.g. soil, water) within a pixel (Fisher

& Mustard, 2007; Misra, Buras, & Menzel, 2016).

During the last decades, most studies used coarse-resolution data from sensors such as the
Moderate-resolution Imaging Spectroradiometer (MODIS) (Keenan & Richardson, 2015;
Liang & Schwartz, 2009; L. Liu et al., 2015) and the Advanced Very High Resolution
Radiometer (AVHRR) (e.g. White et al., 2009) to map phenological dynamics of forests. While
the spatial resolution of the respective sensors is not sufficient to discern phenological patterns
on landscape scales (Fisher & Mustard, 2007; Hufkens, Friedl, Keenan, et al., 2012), low
observation density and cloud cover constrain the use of higher-resolution sensors such as the
Landsat ensemble in certain areas (P. Jonsson, Cai, Melaas, Friedl, & Eklundh, 2018). The
launch and operation of the two Sentinel-2 satellites in 2013 and 2017 significantly increases
observation density. By combining Landsat 8, Sentinel-2A and Sentinel-2B, a median
observation interval of 2.9 days could be achieved theoretically. In practice though, cloud cover
and haze can decrease the observation density considerably (J. Li & Roy, 2017). Landsat 7
delivers only fragmentary data since 2003 when the scan line corrector failed (Markham,
Storey, Williams, & Irons, 2004). However, current incomplete scenes can still be used and
therefore can add valuable observations to time series analysis especially in areas with frequent
cloud cover. The combination of Landsat and Sentinel-2 data therefore is a valuable data source
for characterizing phenological dynamics with higher spatial and temporal resolution (Melaas,

Friedl, & Zhu, 2013).

A variety of different methods for time series fitting and extraction of phenological parameters,
most commonly start of season (SOS) and end of season (EOS), have been developed so far.
There exist different methods to derive phenology estimates from time series through curve
fitting: While some studies applied threshold-based approaches (e.g. Garonna et al., 2018;
Keenan et al., 2014), it is also possible to use different fitted parameters directly, e.g., from a
logistic function (Verma, Friedl, Finzi, & Phillips, 2016). Logistic functions have been
commonly used by a range of studies to derive spring and autumn phenology from remote
sensing time series (Verma et al., 2016): Fisher et al. (2007) used the logistic function to model
spring phenology from MODIS data. Senfet al. (2017) applied a logistic function in a Bayesian
modeling framework to characterize spatial and temporal variability of spring phenology using
multiannual Landsat time series. P. Jonsson et al. (2018) used box-constrained fits on a double
logistic function to derive start and end of season of several years from Normalized Difference

Vegetation Index (NDVI) Landsat and Sentinel-2 time series over a test site in Sweden.
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Similarly, Melaas, Friedl, & Zhu (2013) created pooled time series of Enhanced Vegetation
Index (EVI) from Landsat data with two separate logistic functions to estimate longtime
averages but also inter-annual variability of spring and autumn phenology. Other methods
which have been used include the application of different filters and polynomial functions (e.g.
Garonna et al., 2018; Jonsson & Eklundh, 2004). However, White et al. (2009) showed that
estimates from different threshold-based algorithms do not consistently correlate for larger
study areas. Verma et al., 2016 on the other hand, found a high agreement between results of
four different growth functions, confirming the suitability of the logistic function to model
spring phenology. Asymmetric signals in spring and autumn are poorly captured by logistic
functions though (Verma et al., 2016). Therefore, Melaas, Sulla-Menashe, et al. (2016) used
cubic splines to estimate historical phenological dynamics in several study sites across North
America from Landsat time series. Moreover, Buitenwerf, Rose, & Higgins (2015) applied
cubic splines to model various phenological parameters on a global scale. Compared to the
logistic function, smoothing splines have been used infrequently to extract spring phenology

from remote sensing time series.

While methods developed to extract phenology from satellite-based data are manifold,
validation data for LSP is generally scarce and oftentimes disparities regarding scale,
monitoring approach and spatial representation restrict their applicability. Phenology estimates
of data sources such as near-surface remote sensing have been compared to remote sensing-
based phenology and several studies found good agreement, especially regarding spring
phenology (e.g. Klosterman et al., 2014; Melaas et al., 2016). Near-surface remote sensing in
form of stationary sensors facilitates very dense observation intervals. Nonetheless, Hufkens,
Friedl, Sonnentag, et al. (2012) emphasized substantial uncertainties regarding scalability and
landscape representation when comparing near-surface remote sensing to satellite-based remote

sensing.

Most commonly, phenological estimates from remote sensing have been compared to ground
(also “in-situ”) observations (Misra et al., 2016). There are, however, several issues related to
this: Firstly, observations on point level (ground observations) do not necessarily represent
phenology on the pixel level as observed by satellite sensors. Since ground observations are
mostly species-specific, it is unclear if single species can represent landscape scale phenology
or phenology of the respective area of a single pixel (White et al., 2009). Adding to this, the
biophysical development of the vegetation as observed by remote sensing does not resemble
the same process as phenological phases observed on ground level. For example, the SOS

estimate based on a vegetation index threshold might not be comparable to different stages of
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leaf development observed on ground level (Fisher & Mustard, 2007; Misra et al., 2016; White
et al., 2009). Due to these constraints, it is generally difficult to use ground observations as
verification for LSP which explains contradictory results regarding the comparability of in-situ
observations and remote sensing-derived LSP: Fisher et al. (2007) found a low agreement
between ground observations and LSP from coarse resolution sensors as MODIS. By contrast,
e.g. Melaas, Sulla-Menashe, et al. (2016) reported strong and consistent correlations between
SOS observed on ground and SOS estimated from Landsat data. This indicates that in-situ
observations might be suitable to validate LSP from medium resolution remote sensing time

series.
1.3 Research objectives

In this study, we characterize spring phenology of temperate broadleaved forests in Germany
by exploiting the potential of multi-sensor, medium resolution time series. We assess the
applicability of the frequently used logistic model and generalized additive models using thin
plate regression splines to derive spring phenology of temperate broadleaf forests. We then
compare our remote sensing-based estimates of spring phenology with in-situ observations and
two mechanistic models, the Thermal Time model and the Sequential model, to analyze the
regional importance of meteorological drivers (such as thermal forcing and chilling) and to
reveal potential limitations of current process-based models. In order to overcome those
limitations, we finally use remote sensing estimates to derive GDD and CD from process-based
models. Apart from forcing and chilling mechanisms, other environmental drivers such as
elevation, cardinal directions and extent of urban areas are of interest because they are
associated with spatial variability in spring phenology, which can be detected using medium

resolution multi-sensor time series.
Specifically, we want to address the following questions:

- How does the choice of model and vegetation index influence the SOS estimates from
Landsat/Sentinel-2 time series?

- How do SOS estimates from Landsat/Sentinel-2 compare to in-situ observations?

- How do SOS estimates from Landsat/Sentinel-2 compare to estimates from
mechanistic models?

- How well do environmental factors explain the spatial variability in SOS estimates?

12



2 Methods

The study approach consists of three parts: We first derive spring phenology across Germany
from remote sensing time series, built from Sentinel-2 and Landsat 7 and 8 data. We test two
different models (logistic model and generalized additive model (GAM)) with two different
vegetation indices (EVI and NDVI) to extract SOS dates for the year 2017 at 414 different
locations across Germany and compare them to available in-situ observations of leaf unfolding.
Further, we evaluate potential environmental drivers of spring phenology and their impact on
the spatial variability of SOS estimates. In the second part, we apply two commonly used
mechanistic phenological models, the Thermal Time (TT) model and the Sequential model,
using meteorological data from the German Weather Service. We then assess the differences
between SOS estimates from time series and SOS dates from mechanistic models. Adding to
this, we obtain the amount of chilling (i.e. CD) prior to SOS. In a third step, we use SOS dates
from remote sensing to derive GDD from the TT model for each plot in our study area to assess
the spatial representation of chilling and thermal forcing from the TT model in Germany (Fig.
1). In the following sections, we describe details and specifications regarding the study area,

remote sensing data, meteorological data, sampling design, time series models and mechanistic

models.
Landsat/ X 2 505 / Parameters / / Temperature /
Sentinel-2 data estimate (plot) I|terature data
l [ GAMEVI ] . |
Sampling, TT Model eq“e”“a
extraction / BENNC / Model
ol | LOGEVI |/
Time ser|es / {0G NDVI / Mechanllstlc
modelling modelling
/ In-situ obs. /1— I ' 1
GAM Logistic SOS
model Elevation Chilling

— [Utban rea| ——__ [ 505
| EVI | | NDVI | differences |

Fig. 1: Data, processing steps and modeling approaches to derive SOS and GDD estimates for

Germany from Landsat and Sentinel-2 time series and process-based models.
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2.1 Study area

Germany spans an area of 357.386 km? from which about a third is covered by forests belonging
to the northern temperate forest biome in Central Europe. Nearly 42% are broadleaf forest and
consist of commonly occurring broadleaf species including European beech (Fagus sylvatica),
sessile oak (Quercus petraea), common oak (Quercus robur), silver birch (Betula pendula),
European ash (Fraxinus excelsior) and sycamore maple (Acer pseudoplatanus). Most broadleaf
tree species are endemic in Germany with non-native species accounting for only 5% of the
total forest area. Broadleaved trees — such as oak or beech — also can reach a relatively high age
(mean age of 102 and 100 years) (Bundesministerium fiir Erndhrung und Landwirtschaft,
2018). Especially older forests enable various benefits such as increased microhabitats and
carbon storage and are therefore of great ecological value (Luyssaert et al., 2008; Stephenson

et al., 2014; Winter, Hofler, Michel, Bock, & Ankerst, 2015).

Climate, as one of the main factors driving phenology of forests, is characterized by an east-
west gradient in Germany: The eastern regions of the country are primarily influenced by a
continental climate whereas western Germany is dominated by oceanic influences. Overall, the
temperature range is smaller in northwestern Germany, with mild winters and summers.
Continentality increases in eastern Germany where winter temperatures are lower and summer
temperatures are higher than in northwestern parts of the country. In central German mountain
ranges and towards the Alps, temperatures are lower due to higher elevations (Zoéller,

Beierkuhnlein, Samimi, & Faust, 2017).

Generally, elevation increases in Germany from north to south. The northern German plains
are lower than 200m a.s.l. and have been shaped by several glacial advances. Towards the
central German uplands, elevation ranges from 200 to 1,500m a.s.l. The landscape is structured
by valleys, basins and mountain ranges, e.g., the Harz mountains, the Rhenish Slate mountains,
the Black Forest and the Thuringian and the Bavarian Forest. The Alpine foreland begins
approximately south of the Danube river where the landscape is shaped by glacial sediments.
Further south, a small portion of the Alps is part of Germany where mountains reach elevations

of nearly 3,000m (Semmel, 1996; Zoller et al., 2017).
2.2 Sampling design

The sampling design is based on the network of the meteorological stations (from here on
referred to as plots) in Germany operated by the German Weather Service. Sampling units are
pixels of different sizes corresponding to each sensor (30m for Landsat 7 and 8, and 10m for
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Sentinel-2). Thirty random samples were drawn in 5,000m distance around each plot in
undisturbed broadleaf forest (Fig. 2). We included plots with at least 350 pixels of broadleaf
forest within 5,000m distance. We used the land cover classification of Pflugmacher et al.
(2019) and Pflugmacher, Senf, Yang, Seidl, & Hostert (2019) to identify undisturbed broadleaf
forest with a minimum mapping unit of 11 pixels, corresponding to 9,900m? in total. Most plots
with insufficient broadleaf forest area were situated in lower mountainous areas such as the
Harz Mountains, the Bavarian Forest, and the Black Forest, where coniferous forest prevails.
Other omitted plots lie in the north of Germany, mostly on islands or within mudflats where
little to no broadleaf forest exist. Overall, 12,420 pixels were sampled for 414 plots. To ensure
that not more than one sample falls within a single pixel, the minimum distance between each
sample is 30m in X and Y direction. The design enables a meaningful comparison between the
SOS estimates from remote sensing time series and the SOS estimates from different
mechanistic models due to the spatial proximity to the plots where meteorological data was

collected.
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Fig. 2: Study area of Germany with meteorological plots, ground observations (GO), and

broadleaf forest cover (background map: Natural Earth).
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2.3 Data
2.3.1 Landsat/Sentinel-2 time series

We used optical remote sensing data from three different sensors to derive dense time series for
the year 2017. The sensors include the Enhanced Thematic Mapper + (ETM+, aboard Landsat
7), the Operational Land Imager (OLI, aboard Landsat 8), and the Multi Spectral Instruments
(MSI, aboard Sentinel-2A and Sentinel-2B).

For preprocessing of the data, we used the Framework for Operational Radiometric Correction
for Environmental Monitoring (FORCE v.2.0). The algorithm is capable of transforming level
1 data to analysis-ready data ranging from level 2 to 4. To obtain level 2 data, preprocessing
steps include cloud and cloud shadow detection, quality screening, atmospheric and
topographic correction, adjacency effect correction and BRDF reduction. FORCE is able to
integrate Landsat 4-8 and Sentinel-2A/2B as a Virtual Constellation (VC) (Frantz, 2018; Frantz,
Roder, Stellmes, & Hill, 2016). To ease time series analysis, processed data is transferred into

a gridded tile structure. For further information on FORCE please see Frantz et al. (2016).

To build time series for each sample, we extracted spectral reflectance data of bands in the
visible, near infrared and short-wave infrared spectrum (excluding the 3 red edge bands of
Sentinel-2) for the year 2017. Quality flags were used to exclude all observations with an

indication of cloud cover, cloud shadow or snow.

In phenological studies, different vegetation indices have been used to assess the spatial and
temporal variation of vegetation state and to extract phenological parameters. Most studies used
the NDVI or the EVI in their analysis (Melaas, Sulla-Menashe, & Friedl, 2018). We therefore
test both indices and assess their applicability. The NDVI was defined by Tucker (1979) as:

('ONIR B 'Ored) (1)

NDVI =
(pNIR + pred)

where p,, . and p__ . are the respective reflectance values of the red and near-infrared band.

The NDVI can take values between -1 and 1, with vegetation surfaces typically yielding values

in the range of 0 to 1.

The EVI is similar to the NDVI, as it also makes use of the near infrared and red bands. By
adding additional parameters and the blue band, the EVI takes atmospheric effects and soil
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background into account which leads to a better differentiation of the vegetation signal (Huete

et al., 2002). The EVI has been defined by H. Q. Liu & Huete (1995) as:

Pnir ~ Prea (2)
+ (1 X Prea ~ Cz X Priue +1L

EVI=G
PNiR

where py,ns 0,1, a0d o, are the respective reflectance values of the near-infrared, blue and

red band, C;and C, are coefficients for correcting aerosol scattering and L is a factor accounting
for soil background. The coefficients take values of G = 2.5, C; =6, C;, =75 and L =1
(Huete, Liu, Batchily, & van Leeuwen, 1997).

2.3.2 Meteorological data

The German Weather Service operates a network of approximately 500 meteorological stations
in Germany from which daily weather data is available (German Weather Service, 2013). We
obtained meteorological data for 414 plots across Germany for the time period from mid-
August 2016 to mid-August 2018 (DWD Climate Data Center (CDC), 2018). The altitude of
all plots ranges from -5 to 1485m a.s.l. We downloaded air temperature data as daily mean air
temperature and filled data gaps in daily mean temperatures of up to 2 days using linear
interpolation. We excluded plots with data gaps larger than 2 days from 1% January to 15" July
2017 for the TT model and in the time period from day of year (DOY) 245 (1* September) in
2016 to DOY 196 (15™ July) in 2017 for the Sequential Model.

2.3.3 In-situ observations of leaf unfolding

We accessed observations of phenological parameters for available broadleaved tree species in
Germany from the PEP725 database for 2017 (see App. A for number and share of observations
per tree species). All observations are classified according to the BBCH scale which describes
various phenological growth stages of plants over the year. We used all records with BBCH
code 11, which notes a stage, where first leaves of a perennial plant are unfolded (Meier, 2018).
Compliant with the sampling design, we derived the average date of leaf unfolding of all
available observations and broadleaved tree species within 5,000m distance of overall 130

meteorological plots across Germany.
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2.4 Landsat/Sentinel-2 time series models

For each of the 12,420 samples, two different types of models were fitted: (i) a GAM using
smoothing splines; and (ii) a parametric logistic model (Fig. 1). As we were primarily interested
in spring phenology, we only used observations from late winter, spring and summer. Hence,
we selected all clear observations from DOY 1 to the day of year where the vegetation index
reached its maximum, plus an extra 20 days to account for variation in the data and to improve
model fit. For both models, we used two different vegetation indices, EVI and NDVI, as input
variables. We found that unrealistic high NDVI values, most probably caused by snow during
the first months of the year, led to problems with model fitting. We therefore calculated a base
vegetation index (VI) (i.e. the mean of all observations in the time period from DOY 1 to DOY
50) and filled all VI values for DOY 1-50 with this base value.

By fitting each model and index combination, we derived four spring phenology estimates for
each sample (Fig. 1). We aggregated all sample estimates from each model separately for every
corresponding plot and evaluated model performance based on the mean squared error (MSE).
The model results were compared by calculating the mean difference between the predicted
SOS dates. Additionally, we assessed differences between SOS derived from time series models
and available in-situ observations. We therefore used linear regression analysis, the
corresponding root-mean-square error (RMSE) and Pearson product-moment correlation. In the

following sections, both, the logistic model and the GAM are described in detail.
2.4.1 Logistic model

The logistic model is the most commonly used parametric model to derive different
phenological parameters from remote sensing time series (Verma et al., 2016) and has been
applied in various studies (e.g. Hufkens, Friedl, Sonnentag, et al., 2012; P. Jonsson et al., 2018;
Melaas et al., 2013; Senf et al., 2017). Our model uses a logistic function of the form:

_ _ Umar ©)
VI(t) = Vpin + (1 + e—g(t—s)>

Where VI is the vegetation index of choice at DOY t, v,,;, and v,4, are the minimum and
maximum of the function, respectively, g is the rate of change (i.e. vegetation green-up rate), t
is time given in DOY, and s is the location of the inflection point, which we define as SOS
based on previous studies (Melaas et al., 2013; Zhang et al., 2003). The logistic function is

symmetrical around the inflection point, where the growth rate is at its maximum (Fig. 3).
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Regarding vegetation phenology, this is the point in time, where the change rate in canopy

development is highest (Verma et al., 2016).

The model was fitted using the n/s function in R, which uses a Gauss-Newton algorithm to fit
the function to the data (R Core Team, 2017). As prior guesses on the approximate location of
model parameters are needed for faster convergence of the model, we set the starting values for
Vmin and Uy, 4, to the minimum and maximum of the vegetation index of the time series, the
starting value for the rate of change g to 0.2, and the initial SOS value, s, to the mean of all

values which are larger than the median.
2.4.2 Generalized additive model

In addition to the logistic model, we used a GAM to fit the time series of each sample. We used
the mgcv package in R (Wood, 2003) which includes a variety of different smoothing options,
e.g., cubic splines and thin plate regression splines. The general formula of a one-dimensional

GAM is:

VI(t) = B, + s(t) + & (4)

where V1 is the observed vegetation index value at DOY t, fis the intercept of the function at

t = 0, s represents a smoothing function of covariate t, in this case the DOY and &; is a random

error term, with &, ~ N(0, 62).

The smoothing function is defined by:

K 5
SO = ) fbi®
k=1

where the final smoothing function, s(t), is the sum of all basis functions by (t) multiplied by
their corresponding weight 3, . As a smoothing function, we here use thin plate regression
splines as recommended by Wood (2003). Thin plate regression splines of one dimension are
generally comparable to cubic splines. However, knot locations do not need to be defined in
thin plate regression splines (Wood, 2003). Basis functions are created for each data point. In
reality, however, it is unlikely that complex basis functions like this are needed to approximate
the true function. Therefore, the number of basis functions is reduced by an eigendecomposition
where eigenvectors with the k largest eigenvalues are kept. The weight parameter, f,, is

estimated for each basis function using least square regression. The final smoothing function is
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obtained by summing up the values of the scaled basis functions at each value of t (Simpson,
2018; Wood, 2003). Similar to the logistic function, the SOS of the GAM is derived by finding
the DOY where the slope (i.e. the rate of change) of the function is highest (Fig. 3). The rate of
change of VI(t) at a given point P(t|VI) is found by approximating the first derivative using

finite differences.
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’ ---GAM gradient
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Fig. 3: Exemplary model fits of the logistic model (LOG) and the GAM using EVI as input
variable with corresponding gradient functions, multiplied by 2 and 4, respectively (black

points: observations, red and blue circles: SOS estimate of logistic model and GAM).
2.5 Mechanistic models

Mechanistic models have been commonly used to simulate the timing of phenological events
such as budburst and leaf unfolding (Fu et al., 2015). The simplest models simulate
ecodormancy break by taking only forcing temperatures into account. More advanced models
additionally model endodormancy release by including a chilling response and different
combinations of other factors such as photoperiod and vapor pressure (Basler, 2016). We
decided to test two different models: The TT model and the Sequential model. We used
comparably simple models and temperature responses because it has been shown that more
complex phenological models do not necessarily perform better (Basler, 2016; Linkosalo et al.,

2008).

Additionally, we calculated a linear regression of SOS depending on mean spring temperatures.
We therefore used mean temperature in the time period from 1% February 2017 to 31%' May
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2017. We assessed spatial differences between spring phenology estimates from time series
models and the process-based models by calculating differences between results of each model
type and combination. Finally, we derived GDD for each plot by calibrating the TT model with

our SOS estimates from remote sensing time series.
2.5.1 Thermal Time model

The TT model has been described by several authors including Basler (2016), Chuine (2000),
and Fu et al. (2015). It models the timing of leaf unfolding by accounting for the impact of

forcing temperatures on bud development:

tGpp (6)
SO = ) Re(x)
tr

where S¢ describes the state of forcing and x; is the daily mean temperature. Forcing
temperatures start to accumulate at DOY t; and are completed when reaching t;pp. We use a

linear temperature response. Thus, Ry is defined by:

(0 if x¢ < Tpy (7)
Rf(xt) B {xt —Tpr if xe = Tpy

where T}, is a temperature threshold controlling forcing temperature accumulation. We used a
linear representation of forcing temperatures. The forcing requirement is fulfilled if S is equal
to or larger than the forcing threshold F*. T},; and F* are set to 5°C and 250 GDD as used and
determined by Dantec et al. (2014). We assessed differences between spring phenology
estimates from time series models, the TT model and ground observations by calculating

differences between SOS dates of each model.

In addition to calibrating the TT model with literature-based values to derive the date of leaf
unfolding for each plot, we also used the SOS estimates from time series modeling to obtain
GDD for the respective plot by setting t;pp = SOS. We evaluated differences between GDD
estimates from models based on leaf unfolding dates from ground observations and from SOS
dates obtained from remote sensing time series. We calculated differences and further used
linear regression and corresponding RMSE and Pearson correlation coefficients to compare the

GDD estimates.
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2.5.2 Sequential model

The Sequential model is an extended version of the TT model. Besides forcing temperatures, it
also considers chilling as an additional factor influencing the timing of leaf unfolding. The
name of the model points to the implementation of chilling and forcing responses: The chilling
requirement has to be fulfilled before forcing accumulation starts (Chuine, 2000). The forcing

response differs in the parameter t; which is here the DOY when S. = C*. In addition to the

forcing response specified in equation (6) and (7), chilling is represented by:

tcp (8)
Se() = ) Re(xy)
t

where S, is the state of chilling at DOY t and x; is the daily mean temperature. Chilling

temperatures start to accumulate at t.. R, is defined by:

_(0if x> Ty, (9)
Re(xe) = {1 if x, < Tpy

where Ty, is a temperature threshold controlling CD accumulation. t¢p is the point in time
when R, is equal to or larger than C*. Ecologically, this is the timing of endodormancy break.
Additionally, we derived the amount of chilling of each model and index combination occurring
in the time period from 1% Sep 2016 until the SOS from remote sensing time series for each
plotin 2017. To determine a suitable value of C*, we first tested chilling requirement values for
Q. robur and F. sylvatica specified by Dantec et al. (2014). However, we found the chilling
requirement of 80 CD to be too high (i.e. not to be fulfilled during winter) for our study area.
This was especially the case for northwestern parts of Germany which are more influenced by
an oceanic climate with a smaller annual temperature range. We therefore used the mean

chilling requirement of all plots in 2017 (64 CD) derived from remote sensing-based SOS.
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Tab. 1: Parameter values used for the TT model and the Sequential model.

Parameter Value

tr DOY 1 (1% Jan 2017)
TT Model Ty, soc

il 250

e DOY 245 (1% Sep 2016)
Sequential Model To1/Thz 5°C

¢ 64

br DOY where S, = C*

il 250

2.6 Environmental drivers of spring phenology

We evaluated different potential environmental drivers of spring phenology in our study area.
As described in the previous section, we obtained chilling and forcing from SOS estimates for
2017. We examined three additional factors which have been described to impact spring
phenology (see section 1.1): Elevation, east-west gradient and amount of urban area. We
extracted the elevation of each plot from a digital elevation model (DEM) with 30m spatial
resolution (SRTM-1). The location along the east-west gradient was determined from the x-
coordinate of each plot. Lastly, we derived the amount of built-up area within 5,000m distance
around each plot based on the land cover class ‘artificial land’ by Pflugmacher et al. (2019).
We used the Pearson correlation coefficient and simple linear regressions to evaluate the impact

of different drivers on SOS dates, model differences, and GDD.
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3 Results

3.1 SOS estimates from integrated Landsat/Sentinel-2 time series

We applied two different types of models to estimate SOS from Landsat/Sentinel-2 time series:
The logistic model specified in section 2.4.1 and the GAM using thin plate regression splines
specified in section 2.4.2. Due to their higher flexibility when fitting datasets, GAMs converged
for nearly all sample time series while the logistic model converged in 53.81% to 74.80% of
the cases, using NDVI and EVI, respectively. Samples were fitted with a mean of 14
observations. We were able to aggregate SOS dates for all plots (except for one plot from the

logistic model using NDVI), derived from 24.61 samples per plot on average.

We found a moderate correlation between models on the sample level (rzy7 = 0.75 and rvpyr =
0.67) which increased to rgyy = 0.88 and rnpyr= 0.83 after aggregation to plot level. Agreement
between models was higher when using EVI instead of NDVI (Tab. 2). In line with this,
differences between the two models using either EVI or NDVI were smaller than differences
between the two vegetation indices applied to the same model. Accordingly, mean differences
between models were 3.76 days (EVI) and 1.85 days (NDVI). Mean differences of vegetation
indices amounted to -8.32 days for the logistic model and -10.11 days for the GAMs. This
indicates that the GAM estimated later SOS than the logistic model and that models using EVI
estimated later SOS than models using NDVI (Tab. 2). SOS estimates for all plots ranged from
DOY 70 to DOY 153 for all four model and index combinations. However, the majority of
values (0.05™ - 0.95" quantile) ranged from DOY 103 to DOY 142, corresponding to SOS

estimates in the time period from mid-April to the end of May across Germany (Tab. 3).

Tab. 2: Correlations and mean differences for four different model and vegetation index

combinations.
Model Index

LOGew1 LOGnDwv1 LOGnDwv1 GAMnpvi

GAMEvi GAMnpvi LOGgwi GAMEv1

Tsample 0.75 0.67 0.61 0.44
Iplot 0.88 0.83 0.77 0.76
mean difference (sample) 3.80 1.79 -8.91 -10.12
mean difference (plot) 3.76 1.85 -8.32 -10.11
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Tab. 3: Summary statistics for four remote-sensing models, ground observations and two process-based models.

Landsat/Sentinel-2 models Ground Mechanistic models

LOGnDpv1 LOGEgwv1 GAMnDvI GAMEgyvi  observations TT model Seq. model

Convergence 0.54 0.75 1.00 1.00 - - -
Qo.05 103 114 103 117 94 105 106
Qos 119 128 121 131 107 133 133
Qo.95 132 136 135 142 124 143 141
MSE 0.000868 0.000491 0.000655  0.000495 - - -
Mean SOS 118 126 120 130 107 131 130
I'Seq. model 0.54 0.67 0.53 0.65 0.57 1.00 -
I'TT model 0.54 0.68 0.54 0.66 0.66 - 1.00
T'ground observations 0.32 0.45 0.37 0.53 - 0.66 0.57
T'mean spring temperature -0.50 -0.63 -0.50 -0.59 -0.71 -0.94 -0.95
505 R forcing 0.00 0.01 0.05 0.05 0.11 0.50 0.45
Tforcing 0.02 -0.09 0.23 0.22 -0.34 -0.71 -0.67
RZchilling 0.34 0.32 0.29 0.29 0.48 0.50 0.44
Tchilling 0.58 0.57 0.54 0.54 0.70 0.71 0.66
RZ%ievation 0.04 0.06 0.02 0.05 0.17 0.13 0.05
Televation 0.21 0.24 0.13 0.21 0.41 0.36 0.23
Rcastwest 0.00 0.01 0.00 0.00 0.02 0.14 0.15
Teast-west -0.05 0.11 -0.01 0.03 0.15 0.38 0.39
R%urban 0.12 0.18 0.12 0.15 0.06 0.26 0.24
Turban -0.34 -0.42 -0.34 -0.39 -0.25 -0.51 -0.49
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Differences between models were smaller than differences between vegetation indices (Fig. 4).
Both models tended to produce similar results when using the respective vegetation index,
however, GAMs estimated slightly later SOS dates with both, EVI and NDVI, compared to the
logistic model. Contrary to the two models, the two tested vegetation indices produced
considerable different SOS dates (0.05" - 0.95™ quantile): While SOS estimated from EVI
ranged from DOY 114 to 136 and DOY 117 to 142, SOS estimates from NDVI spanned a larger
range of DOY 103 to 132 and DOY 103 to 135, using the logistic model and GAM, respectively
(Fig. 4). The median SOS was also markedly later in both models using EVI compared to NDVI
(Tab. 3). We used the MSE averaged for all plots to assess model performance which differed
strongly between vegetation indices. Using EVI leads to considerably lower MSE, independent

from model choice, compared to models which were fitted with NDVI time series (Tab. 3).

Both models estimated consistently later SOS than observed on the ground when using EVI
(Fig. 5). While SOS dates from NDVI were less delayed, their correlation to ground
observations of leaf unfolding was weaker compared to SOS dates from EVI. In line with this,
the regression line deviated stronger from the identity line and RMSEs were larger for NDVI
model results. Considering these measures, the model combination of GAM and EVI agrees
most with SOS of ground observations (» = 0.53). Consequently, mean SOS from ground
observation was earliest at DOY 107 followed by SOS from NDVI models (118 and 120) and
SOS from EVI models (126 and 130; logistic model and GAM, respectively).
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Fig. 4: Boxplots showing the median (horizontal black line), inter-quartile range (box), +1.5-

times inter-quartile range (black lines), and outliers (points) of SOS derived from the four

model-index combinations (GAM, LOG), the Thermal Time model (TT), the Sequential model

(SQ) and ground observations (GO).
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Fig. 5: SOS dates from four model-index combinations with linear regression to ground

observations of leaf unfolding (solid black: regression line, dashed grey: identity line).
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We assessed spatial variability in SOS dates visually for all four model-index-combinations
across Germany. Moreover, we evaluated the correlation of SOS from different models and
several environmental drivers. There was no clear pattern across the study area regarding SOS
estimates. This also reflects in very weak correlations of opposing directions of east-west
position and SOS dates from remote sensing models and ground observations (Tab. 3).
However, distinct regional patterns were visible in all outputs (Fig. 6). Spring onset was
markedly earlier near large urban settlements, e.g., in and around Berlin, Hamburg, Munich and
the Ruhr area including the cities of Cologne, Dusseldorf, and Duisburg. This interpretation is
supported by correlation coefficients ranging from 206 = -0.42 and rg4m= -0.39 for EVI models
to » = -0.34 for both NDVI models suggesting earlier SOS dates with an increasing amount of
built-up area surrounding the plot (Tab. 3). SOS dates were also comparably earlier in the Upper
Rhine Valley where temperatures are generally higher than in surrounding areas (Zoller et al.,

2017).

In low mountainous areas such as the Rhenish Massif and in the vicinity of the Harz Mountains,
SOS estimates were consistently later. The same holds true for plots near the lower mountain
ranges along the Czech-German border including the Ore Mountains and the Bavarian forest.
In southern Germany, especially in the Bavarian Alpine foreland, SOS dates tended to be later
with decreasing distance to the Alps but also towards the Black Forest in the west (Fig. 6).
While weak correlations with elevation were evident for all four remote sensing-based models
(0.13 £r<0.24), we found a moderate correlation of SOS dates from ground observations and
elevation (» = 0.41). The direction of the relations indicated, as expected, that SOS occurred

later with increasing elevation.

SOS estimates and thermal forcing (i.e. GDD) showed no clear correlations (Tab. 3) indicating
that variation in GDD estimates does not explain spatial variation in SOS estimates. Regarding
chilling though, moderate to strong positive correlations were evident for SOS estimates from
all data sources. For SOS estimates from remote sensing, differences in chilling explained
between 29.10% and 33.89% of the variation (Tab. 3). Overall, by evaluating the relation of
SOS dates and environmental gradients, we found that chilling and the amount of built-up land

influenced SOS dates most, compared to thermal forcing, elevation, and east-west gradient.
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Fig. 6: SOS estimates (DOY) from Landsat/Sentinel-2 time series for all four model and index

combinations (grey points: no data).
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3.2 SOS estimates from mechanistic models

SOS estimates from mechanistic models (0.05" - 0.95" quantile) ranged from DOY 105 to
DOY 143 (TT model) and from DOY 106 to DOY 141 (Sequential model) corresponding to
mid-April to the end of May, generally agreeing with SOS estimates from logistic models and
GAMs. When comparing the results with SOS derived from remote sensing time series, we
observed moderately strong positive correlations indicating agreement between SOS resulting
from both modeling approaches. However, correlations varied depending on applied vegetation
index: Models fitted with EVI time series correlate stronger with SOS dates of the TT model
with rgam = 0.66 and rroc = 0.68. For models fitted with NDVI, moderate correlations of » =
0.54 were obtained from GAM and the logistic model. SOS from the Sequential model
correlated equally strong with SOS from time series models (Tab. 3), suggesting no substantial
differences between the two process-based models. Leaf unfolding dates from ground
observations also showed moderate positive correlations with the TT model (» = 0.66) and the
Sequential model (» = 0.57), indicating overall good agreement. We also assessed the spatial
variability of SOS estimates from mechanistic models visually. Compared to SOS estimates
from Landsat/Sentinel-2 time series, SOS from the TT and Sequential model exhibit less
variability especially towards the north of Germany (Fig. 7). However, distinct patterns such as
earlier SOS dates in the vicinity of cities and later SOS estimates in mountainous areas are also

discernible from both mechanistic models.
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Fig. 7: SOS dates derived from the TT model and the Sequential model (grey points: no data).

Additionally, the linear regression with mean spring temperature yielded moderate correlations
(-0.63 < r <-0.50) to SOS from remote sensing data and slightly stronger correlations for in-
situ observations (» = -0.71) (Tab. 3). However, when only considering plots with ground
observations, correlations further increased up to » = -0.67 for SOS from remote sensing time
series. Again, correlations were stronger and RMSE were smaller for both models using EVI
than for models using NDVI (Fig. 8). As expected, correlation coefficients indicate earlier
spring onset with warmer temperatures and later SOS at sites with lower mean spring
temperature. Regarding the mechanistic models, correlations to mean spring temperature were

markedly higher with 777 = -0.94 and rs., = -0.95.

These results emphasize that global mechanistic models were mainly representing differences
in spring temperature and were not able to entirely reproduce spatial variability of remote

sensing-based SOS dates and observations of leaf unfolding.
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Fig. 8: Relation of SOS from four model and vegetation index combinations to mean spring
temperature (averages of mean daily temperature from 1st February to 31st May) with fitted

linear regression.

Regarding environmental gradients, we found no considerable correlation in east-west direction
in SOS derived from remote sensing but also ground observations. However, SOS from TT and
Sequential model exhibited moderately strong correlations (r7r = 0.38, rseq = 0.39). Moreover,
correlations of SOS from mechanistic models to thermal forcing and chilling were considerably
higher than correlations of remote sensing models with 77 = -0.71 and
rseq = -0.67 (forcing), and rrr 0.71 and rseq = 0.66 (chilling) (Tab. 4). SOS dates from both
mechanistic models correlated slightly stronger with the amount of urban area (r77=-0.51, rseq
=-0.49) than remote sensing models, suggesting an earlier start of season with increasing area
of artificial landcover in the vicinity of the plot. Regarding elevation, SOS dates from the TT
model had a higher correlation (» = 0.36) than SOS estimates from the Sequential model (» =
0.23). Overall, we found considerably higher correlations of SOS estimates from both
mechanistic models to thermal forcing and east-west position compared to SOS estimates from

remote sensing time series.
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Fig. 9: Differences (in days) of SOS estimates from all four model and index combinations and

SOS dates from the TT Model (grey points: no data).
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3.3 Environmental drivers of spring phenology

Mean dates of season onset were nearly equal for the TT model (DOY 131, 11" of May), the
Sequential model and GAM using EVI (DOY 130, 10" of May). The mean SOS from the
logistic model (EVI) (DOY 126, 6 of May) is slightly earlier than SOS from process-based
models, whereas mean SOS dates derived from NDVI models were more than 10 days earlier
(Tab. 3). We calculated differences between the two process-based models and each model-
index combination based on remote sensing data (Fig. 9, App. B). It is apparent that NDVI
models consistently estimated earlier SOS dates than the process-based models. For EVI
models, the differences were more equally distributed around zero, with a mean difference to
the TT model of 0.39 and 4.15 days for GAM and logistic model, respectively (Tab. 4). Mean
differences between SOS estimates from remote sensing and the Sequential model were
minimally lower than mean residuals of the TT model, but the general direction and strength

did not change.

Adding to this, spatial patterns of the residuals of both models were very consistent. We
therefore describe spatial variation of differences between both process-based models and the
four remote sensing models jointly. In Fig. 9 and App. B, negative values indicate an earlier
SOS estimate from the TT model and the Sequential model whereas positive values indicate
later SOS estimates compared to remote sensing models. The spatial distribution of residuals
followed an east-west gradient among all four models with moderate correlations of TT model
differences ranging from r.06 = 0.42 to rgam = 0.47 for EVI and 106 = 0.40 to rGam = 0.46 for
NDVL Correlations of very similar strength were evident for differences of the Sequential
model (Tab. 4). The process-based model results suggest earlier SOS dates than measured from
remote sensing in western parts of the country. In central and eastern regions of Germany,
spring phenology estimates from both process-based models were later than SOS dates from
remote sensing-based models. For models using NDVI, residuals indicating later SOS from
process-based models were prevalent and consistent throughout east, north and central
Germany. Earlier SOS dates from process-based models were only evident for single plots
mainly along the upper and lower Rhine valley (Fig. 9). For all remote sensing models though,
differences to both mechanistic models had strong positive correlations to thermal forcing
(-0.92 < r < -0.85). Consequently, local variability of thermal forcing, expressed as GDD,
accounted for up to 84.07% (0.73 < R’ < 0.84) of model differences, showing that both

mechanistic models were not representing spatial variability in forcing mechanisms.
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We observed weak correlations of TT model differences to elevation for all remote sensing
models (0.19 < r < 0.26) which decreased further for differences to the Sequential model
(0.10 £7 <0.16). In line with this, we found that model differences to the TT model exhibited
weak (rroc = 0.22, ream = 0.18 for NDVI) to moderate (1,06 = 0.44, rcam = 0.40 for EVI)
positive correlations to the amount of chilling present at different plots. Hence, the TT model
estimated increasingly late SOS dates with increasing chilling compared to SOS estimates from
EVI time series. Again, correlations decreased for differences to the Sequential model (Tab. 4)
indicating that the Sequential model, by including the chilling mechanism, is able to better
reproduce spatial variability in SOS caused by differences in chilling requirement. Chilling
explained up to 19.08% (0.16 < R’ < 0.19) of model differences for the TT model to GAM and
logistic model using EVI but only up to 10.93% of model differences (0 < R’ < 0.11) for the
Sequential model (Tab. 4). Overall, we found that differences in SOS estimates can largely be
explained by the local variation of thermal forcing connected to an east-west gradient and, to a
smaller extent, by variation in underlying drivers such as chilling but also urban area and

elevation.
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Tab. 4: Mean, correlation coefficients and R? for SOS differences to the TT model and the

Sequential model.

Landsat/Sentinel-2 models Ground
LOGnDpv1 LOGevi GAMnpvi  GAMEyvi observations
Mean 12.44 4.15 10.50 0.39 22.64
Rforcing 0.74 0.84 0.76 0.83 0.54
Tforcing -0.86 -0.92 -0.87 -0.91 -0.74
R chilling 0.05 0.19 0.03 0.16 0.05
. Ichilling 0.22 0.44 0.18 0.40 0.21
I;;sii::fl R%ievation 0.04 0.07 0.06 0.07 0.04
Televation 0.19 0.26 0.24 0.26 0.20
RZcast-west 0.21 0.17 0.16 0.22 0.12
Teast-west 0.46 0.42 0.40 0.47 0.35
R%urban 0.06 0.09 0.03 0.08 0.21
Turban -0.24 -0.30 -0.18 -0.28 -0.46
Mean 12.35 4.07 10.45 0.34 22.59
RPforcing 0.73 0.83 0.75 0.84 0.65
Tforcing -0.85 -0.91 -0.87 -0.91 -0.80
R chilling 0.01 0.11 0.01 0.09 0.04
Residuals Tchilling 0.12 0.33 0.08 0.30 0.20
Seq. Model R%levation 0.01 0.02 0.03 0.02 0.03
Televation 0.10 0.13 0.16 0.15 0.16
RZcast-west 0.20 0.16 0.15 0.22 0.12
Teast-west 0.45 0.41 0.39 0.47 0.35
R%urban 0.04 0.06 0.02 0.05 0.21
Turban -0.19 -0.25 -0.13 -0.23 -0.46

Values for mean GDD varied from 188 to 244 depending on the model-index combination (Tab.
5). In accordance with SOS results, GDD estimates were larger when EVI was used compared
to NDVI. GDD (0.05™ - 0.95" quantile) from NDVI however, had a smaller range (119 to 279)
than GDD from EVI (218 to 334). Both EVI models were associated with higher GDD
compared to GDD from NDVI models (Fig. 10), reflecting SOS results, where EVI models
estimated later SOS dates than NDVI models.
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GDD based on leaf unfolding dates were smaller than GDD based on SOS estimates from
remote sensing. This is in line with SOS dates from remote sensing which were later compared
to ground observations of leaf unfolding. However, moderate to strong correlations (0.48 <r <
0.74) were evident for GDD from ground observations and SOS dates from Landsat/Sentinel-
2 time series indicating a good agreement between GDD values. Here, GDD based on SOS
from logistic models agreed more than GDD based on SOS from GAM indicated by lower
RMSEs and higher correlation coefficients (Fig. 11).

The spatial distribution of GDD from remote sensing data followed an east-west gradient
(-0.42 <r<-0.38) with small-scale patterns disrupting the general gradient. Overall, more GDD
were observed in western Germany compared to the eastern parts of the study area. This result
also corresponds well to the spatial distribution of model differences between process-based
and remote sensing-based models where remote sensing models estimated earlier SOS (i.e. less
GDD) in the eastern and later SOS (i.e. more GDD) in the western parts of the study area
compared to mechanistic models. Moreover, lower GDD were evident in some mountainous
areas as the Harz mountains and mountain ranges along the Czech-German border including
the Bavarian Forest and the Ore Mountains. Consequently, a higher amount of CD was evident
in these areas. Besides, we found high variations in GDD on small spatial scales (Fig. 12, App.

E).

As expected, our results showed that CD and GDD estimates were negatively correlated for all
models (-0.62 < r < -0.43), indicating less GDD with an increasing number of CD and vice
versa. Correlation coefficients were higher for both logistic models compared to GAMs (Tab.
5). However, we observed local divergence from this pattern, e.g., for plots in the Rhenish
Massif and single plots along the northern coast of the Baltic and the North Sea, where both,
GDD and CD were comparably high (Fig. 12, App. E).
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Tab. 5: Summary statistics for GDD estimates from four remote-sensing models and ground

observations.
Landsat/Sentinel-2 models Ground
LOGnpvi LOGevi GAM~pvi GAMgEeyr  observations
Mean 188 218 197 244 163
Qo.05 119 149 123 170 95
Qo 185 217 192 241 161
Qo.95 263 299 279 334 227
GDD I'GDD ground obs. 067 074 048 062 -
Tchilling -0.58 -0.62 -0.46 -0.43 -0.69
Turban 0.37 0.34 0.26 0.23 0.56
Teast-west -041 -038 -038 -042 -033
Televation -0.31 -0.35 -0.29 -0.28 -0.43
500+ - EVI
° ' NDVI
400+ s o o
' [ ]
Q 300- 1 o -
(D -
2001 = S
100+ s
8 :
! ° ' [ ]
GAM LOG GO

Fig. 10: Boxplots showing the median (horizontal black line), inter-quartile range (box), +1.5-
times inter-quartile range (black lines), and outliers (points) of GDD derived from the four

model-index combinations (GAM, LOG) and ground observations (GO).
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Fig. 12: GDD from TT model using SOS estimates from Landsat/Sentinel-2 time series (grey

points: no data).
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4 Discussion

4.1 SOS estimates from integrated Landsat/Sentinel-2 time series

In the first part of this study, we analyzed the feasibility of different model and vegetation index
combinations to estimate spring phenology of temperate broadleaf forests from dense, medium
resolution multi-sensor satellite time series. Overall, we tested two different models (logistic
model and GAM using thin plate regression splines) with two vegetation indices (EVI and
NDVI) as input. The results confirmed the applicability of both, the logistic model and the
GAM to estimate SOS of temperate broadleaved forests. While logistic functions have been
widely used in various studies (e.g. P. Jonsson et al., 2018; Melaas et al., 2013), considerably
fewer studies have applied smoothing splines in order to derive spring phenology from medium
resolution satellite time series (e.g. Melaas, Sulla-Menashe, et al., 2016). We found higher
convergence rates of GAMs when fitting time series for all samples, pointing to higher
flexibility compared to the logistic model. Regarding model choice though, further research is
needed in order to assess the robustness of the estimates and connected to this, potential

negative effects of limited observation density (P. Jonsson et al., 2018).

From our results we can infer that both, the logistic model and the GAMs, performed equally
well, whereas regarding choice of vegetation index, EVI outperformed NDVI: We found higher
correlations between the two EVI models and smaller MSE compared to NDVI models.
Moreover, SOS estimated from EVI time series agreed better with in-situ dates of leaf unfolding
despite a consistent time lag. While the majority of studies used NDVI for deriving spring
phenology, higher applicability of EVI has also been shown for MODIS data (Klosterman et
al., 2014). Hufkens, Friedl, Sonnentag, et al. (2012) also emphasize the impacts of different
vegetation indices for retrieving phenological parameters from remote sensing time series.
Moreover, NDVI tends to reproduce snowmelt dynamics rather than actual phenology in, e.g.,
higher latitude forests. Therefore, it has been suggested, that other vegetation indices are more
suitable to derive phenological parameters (Jin, Jonsson, Bolmgren, Langvall, & Eklundh,

2017; A. M. Jonsson, Eklundh, Hellstrom, Bérring, & Jonsson, 2010).
4.2 Spatial variability of SOS estimates and ground observations

Our SOS estimates are in line with other studies, which found a moderate agreement of SOS
from remote sensing and ground observations (Melaas, Sulla-Menashe, et al., 2016; Rodriguez-

Galiano, Dash, & Atkinson, 2015). However, these studies did not find delayed SOS estimated
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from remote sensing. In fact, Jin et al. (2017) and White et al. (2009) even report earlier SOS
dates from MODIS and AVHRR using NDVI time series compared to ground observations.

Apart from differences between monitoring methods of ground observations, a possible
explanation are differences in physiological measures as date of leaf unfolding does not directly
translate to the measure which we determine as SOS date based on the spectral response of the
surface. Moreover, in-situ observations target single species which are not necessarily
representative of phenology as derived from remote sensing time series (Fisher & Mustard,
2007; White et al., 2009). In this regard, information on species composition, e.g., from forest
inventory data, could be used to filter applicable ground observations of the respective species.
Ground observations, which are part of the German Weather Service network, aim to monitor
single trees outside larger forest stands (German Weather Service, 2015) and might therefore
not represent conditions within larger forest stands. While we only used ground observations
within 5,000m of each plot, the ground observations themselves might be up to 5,000m away
from the denoted coordinate (German Weather Service, 2015), further increasing associated
uncertainty. Besides, there is no possibility to evaluate potential measurement errors of in-situ
observations. Adding to this, our sampling design was set up in a way that a mean SOS estimate
was derived from 30 samples for an area of up to 78.54 km?. In this area, differences in
phenology are not unlikely to occur due to, e.g., differences in elevation or small-scale climate
variability (Fisher et al., 2007), potentially leading to increasing inaccuracies in SOS estimates

at the plot level.

Differences in elevations of samples belonging to the same plot could also be an explanation,
why we observed very weak correlations of SOS and elevation as opposed to other studies.
However, some of these studies are confined to smaller geographical extents in mountainous
areas, where elevation is a major driver of spring phenology (e.g. Guyon et al., 2011; Senf et
al., 2017). Since our study covers a much larger area, an elevation gradient might be driving
phenology in distinct (e.g. mountainous) regions but might be less important across the whole
study area. Regarding the amount of urban area, results indicated, as expected, an earlier SOS
with increasing artificial land cover. This has also been reported by other studies (Melaas,
Wang, et al., 2016; Zhang, Friedl, Schaaf, Strahler, & Schneider, 2004). Here again, we can
assume that correlations are not as strong as in these studies because study areas were smaller
and limited to regions with rural-urban gradients. We observed no east-west gradient in SOS
estimates, suggesting that a large-scale east-west gradient is overruled by small-scale variation

of other environmental drivers. In line with this, SOS estimates were not correlated with the
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amount of forcing evident at each plot. Overall, weak to moderate correlation strengths of SOS
to different drivers can therefore be explained by locally varying impacts of the respective
environmental factors. We showed that medium resolution time series from Landsat and

Sentinel-2 are able to detect spatial variation caused by different environmental drivers.
4.3 Differences in SOS estimates and environmental drivers

We evaluated the results of two mechanistic models and their differences to SOS estimates
from Landsat and Sentinel-2 time series. We found a moderate agreement between SOS derived
from Sentinel-2 and Landsat data and SOS from two mechanistic models. However, we used
simple representations of chilling and thermal forcing in both mechanistic models.
Consequently, more work is needed in order to, e.g., assess different responses to temperature
such as sigmoid or bell-shaped functions (Basler, 2016). Furthermore, day- and nighttime
temperatures could be used in mechanistic models since it has been suggested that daytime
temperatures exert stronger effects on spring phenology than nighttime temperatures (Fu et al.,
2016; Piao et al., 2015). We observed that mechanistic models using literature-based values for
Germany were not able to entirely reproduce spatial patterns of spring phenology as observed

from Landsat and Sentinel-2 time series.

In fact, the relations of SOS dates from remote sensing and mechanistic models to
environmental gradients suggest that local factors, which are not represented in mechanistic
models, influence spring phenology in our study area and drive spatial variability on smaller
spatial scales. Large shares of model differences between SOS from mechanistic models and
from Landsat/Sentinel-2 time series were explained by spatial differences in forcing and
chilling but also other environmental drivers such as east-west gradients and amount of urban
area. In line with this, our analysis indicated that GDD and CD, derived from the TT model
using SOS estimates, exhibit considerable variability across our study area. Accordingly, it has
been shown that forcing and chilling requirements vary spatially and also among individuals of
the same species (Kramer et al., 2017). These results also hint to a strong variability of local
climatic influences as described by e.g. Fisher, Mustard, & Vadeboncoeur (2006). As opposed
to, e.g., MODIS data on coarser spatial resolution, it is possible to detect small-scale variation
of spring phenology (Fisher et al., 2006) and therefore also forcing and chilling with medium
resolution time series. As suggested in several studies (e.g. Chuine et al., 1999; Dantec et al.,

2014), we also found that chilling and forcing are negatively correlated. Our results underline
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the need to enhance the representation of spatial variability of thermal forcing and chilling in

mechanistic models.

Regarding the agreement of GDD from ground observations and Landsat and Sentinel-2 time
series, we found moderate to strong correlations. More GDD were estimated by remote sensing
models, reflecting the delay of SOS estimates from remote sensing time series. GDD from in-
situ observations agreed better with GDD from logistic models than with GDD from GAMs.
While there is no well-founded explanation possible at this point, further evaluation of both
remote sensing models might elucidate these results. In the past, ground observations have been
widely used to calibrate mechanistic models (e.g. Basler, 2016; Linkosalo et al., 2008; Schaber
& Badeck, 2003). However, there is evidence that resulting models are not transferable to other
study areas (Richardson et al., 2006). Therefore, medium resolution remote sensing time series
present a spatially continuous alternative in areas where phenological ground observations are
scarce (Fitchett, Grab, & Thompson, 2015). To derive GDD and CD from the mechanistic
models, we used fixed values of base temperature (Ty,, Tp2) and starting day of forcing and
chilling accumulation (tf, t., respectively). However, Fisher et al. (2007) showed that optimal
values for both, base temperature and starting day of heat accumulation, vary spatially. It
remains to be examined to what extent this applies to our study area. Moreover, uncertainties
of GDD and CD values could not be quantified because we used SOS estimates for a single
year. In order to draw further conclusions about the reliability of GDD and CD estimates,
multiannual time series of Landsat and Sentinel-2 data could be used to calibrate mechanistic

models.
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5 Conclusion

In phenological studies, various data sources and approaches have been applied in the past
decades to expand existing knowledge. However, a complete understanding of the mechanistic
processes of forest phenology is still missing. Therefore, Tang et al. (2016) stressed the need to
bridge the gap between different disciplines of phenological studies in order to assess spatial
and temporal variability as well as drivers of phenological processes. This study presents a first
effort to integrate mechanistic models and spring phenology estimates from medium resolution

multi-sensor time series.

With the combination of current medium resolution sensors emerges the potential to derive
phenological parameters across large spatial extents and with high spatial detail. In this study
we used dense time series consisting of Landsat and Sentinel-2 data, to model and characterize
spring phenology of temperate broadleaf forests in Germany for the year 2017. By comparing
two commonly used models and vegetation indices, we showed that the choice of vegetation
index has a higher impact on the resulting SOS estimates than model choice. Both, the logistic
model and the generalized additive model estimated spring phenology consistently. Regarding
the vegetation index however, EVI was more feasible for deriving spring phenology of
temperate broadleaf forests than NDVI. The advantages of the application of medium resolution
remote sensing time series include the opportunity to obtain phenological estimates for large
areas and to capture regional to local phenological variation as well. Various studies emphasize
the limited comparability of in-situ observations and phenological parameters estimated from
remote sensing (e.g. Fisher & Mustard, 2007; Misra et al., 2016). Our results underline that
differences in the meaning of both measures exist for our study area and should therefore be

examined and compared carefully.

While we were able to derive SOS and GDD estimates for the year 2017, more research is
needed in order to quantify uncertainties of SOS and GDD estimates by calibrating mechanistic
models with spring phenology estimates from multiannual time series. Currently, process-based
models are used in terrestrial biosphere models but fail to predict phenological key parameters
such as season onset reliably (Richardson et al., 2012). Consequently, we showed that spring
phenology estimates from Landsat and Sentinel-2 time series varied locally and were not
reproduced by mechanistic models. Differences were mainly explained by spatial variability of
thermal forcing and chilling. Therefore, remote sensing-based estimates of spring phenology

have a high potential for calibrating mechanistic models locally but also across large spatial
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extents which can ultimately enhance the representation of spring phenology in terrestrial

biosphere models.

This study is a first step towards an improved representation of spring phenology in mechanistic
models. Combined dense, medium resolution time series from sensors such as Sentinel-2 and
the Landsat ensemble provide the opportunity to monitor and model vegetation phenology
across large areas. Ultimately, this can be used to better understand the complex impacts which

future climatic conditions will have on ecosystems globally.
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Appendix

App. A: List of species and corresponding phenological ground observations.

Species No. of observations (BBCH = 11)
Aesculus hippocastanum 1,028

Alnus glutinosa 854

Betula pendula 1,033

Fagus sylvatica 943

Fraxinus excelsior 836

Quercus robur 974

Sum of observations 5,668
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App. B: Differences of SOS estimates (in days) from all four model and index combinations

and SOS estimates from the Sequential Model (grey points: no data).
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App. C: SOS (left) and GDD estimates (right) using ground observations of leaf unfolding.
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App. D: Relation of GDD and CD across all plots.
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App. E: Average chilling days (CD) for every plot (grey points: no data).
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