Direkt zum InhaltDirekt zur SucheDirekt zur Navigation
▼ Zielgruppen ▼

Faculty of Mathematics and Natural Sciences - Geomatics

Dr. Akpona Okujeni

Name
Dr. Akpona Okujeni
Status

Postdoctoral researcher

E-Mail akpona.okujeni@geo.hu-berlin.de
Office location Rudower Chaussee 16, Room 2'222
Phone +49 (0)30 2093-6894
Fax +49 (0)30 2093-6848
Postal address Unter den Linden 6, 10099 Berlin, Germany

About me

I am a Geographer with a background in remote sensing and geographical information science. My research focuses on bridging methods and applications using multi- and hyperspectral remote sensing, machine learning and spatial statistics. Specifically, I am interested exploring the potential of remote sensing to map and monitor urban and (semi-)natural vegetation ecosystems in times of rapid global change.

Curriculum Vitae

since 2015

Doctoral Researcher. Geomatics Lab, HU-Berlin, Germany (Projects: EnMAP Core Science Team, UrbanEARS).

11-12 2011

Visiting scholar (DAAD fellowship), Columbia University, Lamont-Doherty Earth Observatory, New York.

2009-2014

Doctoral researcher, Geomatics Lab, Humboldt-Universität zu Berlin (Project: Berlin II)

2004-2009

Diplom-Student in Geography, Geoinformation Science and Geology, Humboldt-Universität zu Berlin.

A detailed CV can be found here.

Selected Publications

Okujeni, A., van der Linden, S., Suess, S., & Hostert, P. (2017). Ensemble Learning From Synthetically Mixed Training Data for Quantifying Urban Land Cover With Support Vector Regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 1640-1650. 10.1109/JSTARS.2016.2634859.

Okujeni, A., van der Linden, S., Hostert, P. (2015). Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning. Remote Sensing of Environment, 158, 69-80. 10.1016/j.rse.2014.11.009.

Okujeni, A., van der Linden, S., Tits, L., Somers, B., & Hostert, P. (2013). Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sensing of Environment, 137, 184-197. 10.1016/j.rse.2013.06.007.

A full publication list can be found here.