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Abstract. With the onset of global climate change, Earth’s
permafrost regions are of particular interest, since approx-
imately 50% of the global subsurface carbon reservoir is
located in the Arctic permafrost region (Hollesen et al.,
2015). Thawing permafrost and the release of carbon to the5

atmosphere triggered by rising temperatures and changing
weather patterns is considered as a potential tipping point and
a global-scale positive feedback on climate change (Hollesen
et al., 2015). Due to their remoteness, adequate monitoring
of these regions is sometimes very difficult. Methods em-10

ploying remote sensing techniques using trend analysis are
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an effective way to tackle these challenges. In this study we 
are using the Landsat archive to identify change processes in 
the North American Arctic coast employing a trend analysis 
process based on research by Nitze and Grosse (2016). In ad-
dition, the extent of these processes were estimated based on 
the trend data and a general change classification was under-
taken. We confirmed the results of increased greening of the 
permafrost tundra between 1999 and 2014 and identified pro-
cesses causing the trends. Google Earth Engine was used as 
a processing infrastructure which proved to be an excellent 
platform to conduct these kinds of analyses.

Figure 1. The figure shows an overview map with permafrost extent, study areas in red and the Lena River delta in yellow (Permafrost
Map based on: Brown et al. (1998)). The seven study regions are displayed in more detail in the smaller maps (Basemaps are based on:
OpenStreetMap contributors (2017).
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1 Introduction

Climate change affects multiple regions worldwide, with
changing precipitation patterns, increasing intensity and fre-
quency of extreme weather events and increasing temper-
atures (IPCC, 2019). The effect is especially pronounced5

in the Arctic regions through feedback patterns, denoted as
“arctic amplification” (Serreze and Barry, 2011). Arctic per-
mafrost regions are therefore exposed to increasing mean
temperature and longer thawing seasons, which affects the
active layer depth and bounding properties of the soil. Per-10

mafrost degradation due to these processes affect local fauna
and flora, destroy built-up infrastructure (Hjort et al., 2018)
and induce the release of potent greenhouse gases bound in
the frozen soil, creating a positive feedback loop through
further increasing temperatures (IPCC, 2019; Berner et al.,15

2020; Nitzbon et al., 2020).
Understanding these processes and monitoring the effects

is crucial in predicting permafrost development in the near
future and estimating the sensitivity of the whole earth sys-
tem to climate change. As permafrost regions are often at re-20

mote locations with little infrastructure for local monitoring,
remote sensing techniques are applied to derive information
from data acquired by air or space-borne sensors (Markon
et al., 1995; Berner et al., 2020). Beginning in the 1970s,
an increasing number of earth observation satellites provide25

global monitoring with increasing spatial and temporal reso-
lution (Wulder et al., 2016).

Several methods to transform raw reflectance data into evi-
dence for surface change processes were derived and applied
to the permafrost regions. Indexed metrics derived from the30

surface reflectance were employed to create time series and
identify changes in the permafrost structure (Markon et al.,
1995; Beck et al., 2015). Time series data can further be con-
densed into trend analysis, where data from multiple data
points in a time period are reduced to simple trend evalua-35

tions with statistical analysis through regression models (e.g.
Fraser et al., 2014).

Nitze and Grosse (2016) employed the Theil-Sen regres-
sion (TSR) algorithm to extract Tasseled Cap and multi-
ple normalized difference index trends from Landsat data in40

the Lena Delta region in Siberia. They found noticeable in-
creased greening and surface wetness trends near coastal ar-
eas, ice-rich permafrost or major channels of the delta.

This report employs the same methods to study permafrost
change processes at river deltas in the permafrost region of45

North Slope, Alaska. In addition to investigating the feasibil-
ity of applying Nitze and Grosse’s methods in other regions,
this study focuses on the following questions:

– Is the magnitude of trends comparable to the results of
Nitze and Grosse (2016) and can similar processes be50

found?

– Can the trend analysis help to identify local change pro-
cesses in the permafrost and what is the areal extent of
these processes?

– Are trend data a feasible base to create supervised 55

change process classifications?

2 Study Site

Six regions with river deltas in North Slope, Alaska and the
MacKenzie River Delta in northern Canada (Figure 1) were
delineated in Google Earth Pro to represent different types of 60

coastal morphology while still being comparable to the Lena
Delta of the original study. The rough delineations include
barrier islands close to the coast to examine trends caused by
marine erosion and sedimentation.

Three regions (Admirality Bay, Colville River and Prud- 65

hoe Bay) exhibit large areas dominated by thermokarst lakes.
Canning River represents rivers creating alluvial fans across
the coastline with less delta formation. The Barter Island
and Babbage River regions contain large alluvial plains,
with a pronounced birdfoot delta in case of the former. The 70

MacKenzie River delta region is, in terms of extent and for-
mation pattern, the most comparable to the Lena Delta exam-
ined in the base study.

The study areas are located in the tundra climate zone,
with mean annual air temperatures ranging from around - 75

4°C at the MacKenzie River basin to approximately -11°C
measured at Prudhoe Bay (Millot et al., 2003; Kanevskiy
et al., 2017). The precipitation in these regions are low with
an annual sum of around 150 mm which characterises this
area as arid (Pushkareva et al., 2016; Kanevskiy et al., 2017). 80

Apart from the MacKenzie River basin, which partly lies in
the discontinuous permafrost zone, all regions are located in
the continuous permafrost zone (Figure 1). The climate con-
ditions are comparable to the Lena Delta, which also has a
typical High Arctic climate with slightly lower mean annual 85

air temperature (Boike et al., 2013; Nitze and Grosse, 2016).

3 Methods

3.1 Landsat Data

Preprocessing of remote sensing data (Figure 2) was de-
signed along the workflow presented in Nitze and Grosse 90

(2016) and executed in Google Earth Engine, which was also
the source of the raw Landsat images. This consisted of the
Collection 1/Tier 1 Surface Reflectance Product of the Land-
sat 5, Landsat 7 and Landsat 8 satellites. All calculations
leading up to the final regression data were processed using 95

the Google Earth Engine API.
Three filters were defined for footprint selection:

– overlapping region polygons
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Landsat 5 Archive
LANDSAT/LT05/C01/T1_SR

Landsat 7 Archive
LANDSAT/LT07/C01/T1_SR

Landsat 8 Archive
LANDSAT/LT08/C01/T1_SR

Stacking
by index

Index
Stacks

Masking + Mosaicing
Region Polygon

Clouds, Cloud Shadows, Snow
from qa_pixel band (FMASK)

Index Calcula�on
NDVI, NDMI, NDWI

TCB, TCG, TCW 
(sensor specific!)

Region Polygon

CLOUD COVER < 80%

Month: July or August

1999 - 2014

NDWI-based
water masks

observa�on
counts

slope intercept

Theil Sen Regression
for each index

1 image 
for each index
with 2 bands

Figure 2. Schematic workflow of processing in Google Earth En-
gine

– acquisition date 1999 - 2014 and in July or August

– cloud cover less than 80%

Continuous acquisitions during the same orbit split into
two or more footprints were compiled into one continuous
image. These images were masked if the included QA in-5

formation indicated a non-surface pixel (cloud cover, cloud
shadow or snow cover). If the QA information of two differ-
ent footprints from the same acquisition disagreed at a pixel
in the overlap regions, the pixel was only masked if both
footprints indicated a non-surface pixel. The masked mosaics10

were additionally clipped to the region polygons.

Table 1. Pixel Observation Counts

region max stdev mean
Admirality Bay 90 30.89 39.16
Colville River 100 35.45 44.72
Prudhoe Bay 105 34.26 33.54
Canning River 115 37.34 46.73
Barter Island 110 32.94 59.30
Babbage River 117 42.39 44.63
MacKenzie River 128 42.37 40.19

1 32 64 96 128

Admirality Bay Colville River

Canning River

Prudhoe Bay

Barter Island

Babbage River MacKenzie River

pixels observed

Figure 3. Count of Pixel Observations after QA masking

On average each pixel was observed about 45 times (Ta-
ble 1) with a slight zonal gradient with lesser observations in
the western regions and more observations to the east. There
is a high variability in the amount of observations for each 15

region, and the patterns of the broken scan line corrector of
Landsat 7 are clearly expressed (Figure 3).
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3.2 Preprocessing

3.2.1 Tasseled Cap and Normalized Difference Indices

Resulting surface reflectance images were processed to index 
images. These were three well-known coefficients of the Tas-
seled Cap Transformation (Crist, 1985; Huang et al., 2002; 
Baig et al., 2014) – brightness (TCB), greenness (TCG) and 
wetness (TCW). The Tasseled Cap coefficients are calculated 
by multiplying the optical bands with a sensor specific ma-
trix.

A second set of indices consisted of three normalized dif-
ference indices, namely the Normalized Difference Vege-
tation Index (NDVI, Rouse et al. (1974)), the Normalized 
Difference Water Index (NDWI, as suggested by McFeeters 
(1996)) and the Normalized Difference Moisture Index 
(NDMI, Wilson and Sader (2002)). Each index incorporates 
the normalized difference of two bands, specifically:

NDV I =
ρNIR − ρR
ρNIR + ρR

(1)

NDWI =
ρG − ρNIR

ρG + ρNIR
(2)

20

NDMI =
ρNIR − ρSWIR1

ρNIR + ρSWIR1
(3)

The NDVI shows profiles of vegetation canopy greenness,
or in our case a metric of tundra greenness. In (1) ρR is
spectral reflectance in the red band (0.58 to 0.68 µm) where25

chlorophyll absorbs maximally, and NIR is the reflectance
in the near-infrared band (0.73-1.1 µm) where reflectance
from the plant canopy is dominant (Markon et al., 1995).
Low values of NDVI (lower than or near -0.1) indicate barren
land cover or water, whereas higher NDVI values (above 0.1)30

indicate greenness with lower or higher vegetation canopy
(Potter and Alexander, 2020), as well as increased vegetation
growth.

The NDMI (Normalized Difference Moisture Index) is
largely affected by the amount of moisture on vegetated area35

and it slightly differs from the NDWI (Normalized Differ-
ence Water Index), which represents open water.

The index calculation resulted in six time series over the
selected period.

3.2.2 Water Mask40

Because region polygons were only roughly delineated and
contained stable water surfaces where the trend data indi-
cated changes, a water mask was needed. In particular, as
regional aggregates of the trends should reflect processes
changing terrestrial surfaces to water and vice versa, the45

mask should only cover stable water surfaces. Multiple ap-
proaches are considered in the literature (see Huang et al.
(2018)) including algorithms consisting of vegetation and
water indices by using certain threshold values or combi-
nation of indices with classification. For this study a simple 50

NDWI threshold algorithm was used (McFeeters, 1996). A
permanent water pixel was estimated if the 95th percentile of
the NDWI values over the period in question had a positive
value.

3.2.3 Theil-Sen Trend Calculation 55

The timeseries were stacked by its respective index and a
Theil-Sen Regression (TSR) (Theil, 1992) was applied. The
TSR fits a linear model to the time series, using the acqui-
sition date as the regressor and the index value as the re-
sponse variable, resulting in a slope and intercept coefficient. 60

In contrast to an ordinary least-squares regression, this al-
gorithm is robust against outliers, even if up to 30% of the
data are not within the assumed variability (Fernandes and
Leblanc, 2005). Google Earth Engine already provides the
TSR algorithm, where a time series stack is processed into a 65

single image, with two bands designating the slope and in-
tercept as distinct bands. This implementation however does
not give access to the confidence intervals of the regression
considered in Nitze and Grosse (2016). Due to the large ef-
fort required for a custom implementation of the TSR, it was 70

decided to deviate from the original study in this regard.

3.2.4 Change Pixel Detection

For the subsequent classification of change processes, a ran-
domly selected set of change pixels was needed. This ran-
dom sampling was restricted to only pixels where the trends 75

suggested a change process. Thus, a further mask was cre-
ated where the trend data indicated an actual change of the
surface characteristics. For this purpose, the regional stan-
dard deviation of the trend slopes were calculated to capture
their natural variability. A significant change pixel for an in- 80

dex was assumed when its value was outside three standard
deviations from a zero trend value. Clusters of change pix-
els smaller than 9 pixels were not considered as a significant
change and removed from the layer.

The index-wise change pixels layers were then combined 85

to a single layer, where a pixel was considered a change pixel
if at least one index layer showed a change pixel. 50 random
points covered by the change layer were selected and com-
bined with the information of which indices showed a change
pixel, and if these were high or low outliers. 90

3.3 Trend Analysis

The resulting trends, calculated via the TSR, were aggregated
for each region to estimate regional slope means and standard
deviation (see Appendix D1). TSR intercept means were also
calculated, and express the expected value for the trends from 95
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the regression for the last year of the period (2014). Stable
water was not considered in these aggregates by employing
the NDWI watermasks (see section 3.2.2).

3.4 Change Processes

3.4.1 Erosion & Sedimentation5

Sedimentation and erosion processes were found along river
courses or coastal sand bars (Figure B1). Erosion describes
the ablation of material, sedimentation describes the accu-
mulation of specific soil material. Arctic erosion is also
highly influenced by the permafrost in the ground, which is10

why thermo-related and mechanical erosion occur along ice
wedge networks. Thus, the erosion itself is self-amplifying
(Jones and Arp, 2015). As sedimentation causes island for-
mations in water bodies it may be accompanied by other
change processes like vegetation encroachment. Erosion can15

be determined when negative trends of NDVI, TCG and
TCB trends are found, while sedimentation occurs mostly
when negative NDWI, NDMI and TCW trends are calculated
(Nitze and Grosse, 2016).

3.4.2 Vegetation Encroachment20

Vegetation in permafrost regions of the northern latitudes
plays a significant role in the carbon cycle, energy balance
and hydrology, and is closely coupled to the state of per-
mafrost. Climate change-induced warming, thawing of the
permafrost and increased precipitation result in greening of25

Arctic regions (Peng et al., 2020). Several studies found posi-
tive NDVI trends in a range of Arctic regions (Jia et al., 2003;
Walker et al., 2012; Nitze and Grosse, 2016). In this study,
change pixels with positive NDVI and TCG trends that were
not subject to ice-wedge degradation (3.4.3) were classified30

as "vegetation encroachment" (Figure B2).

3.4.3 Ice-wedge Degradation

The melting of ground ice and thawing of ice-rich permafrost
leads to thermokarst features (Nitzbon et al., 2020). One ma-
jor type of thermokarst in the continuous permafrost zone35

is the transition from low-centred to high-centred ice-wedge
polygons. This results in the melting of ancient ice-wedges
due to repeated frost cracking and ice-vein growth (Nitzbon
et al. (2020), Liljedahl et al. (2016)). In contrast to thawing
processes in permafrost regions with low ground ice content,40

thermokarst processes can lead to severe permafrost degra-
dation within a few years and have a landscape-scale impact
on carbon decomposition and hydrology. The frozen soil be-
neath the melting ice-wedges prevents water from draining
and leads to the development of deep water-filled troughs45

(Nitzbon et al., 2020). The formation of these troughs can be
observed from satellite images and typically result in positive
NDWI and TCW trends, as well as a negative TCB-trend ac-
companied by rising NDVI and TCG values that are linked

50

55

60

65

70

75

80

85
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to vegetation encroachment in high-centred ice-wedge poly-
gons (Wolter et al., 2016) (Figure B3).

3.4.4 Lake Drainage

Permafrost degradation causes thermokarst lake formations 
in the Arctic landscape (3.4.3) (Jones and Arp, 2015). 50%
to 75% of the Arctic lowlands‘ ice-rich permafrost land-
scapes are covered by drained thermokarst lake basins (Jones 
et al., 2012). Lake tapping by rivers, streams, adjacent lakes 
or ocean, headward gully erosion, anthropogenic influences 
and thaw slump formations are several factors which cause 
lakes to drain (Jones and Arp, 2015). Drainage events (exam-
ple shown in Figure B4) can be analysed by positive NDVI, 
TCG and TCB trends and negative NDMI , NDWI and TCW 
trends (Nitze and Grosse, 2016).

3.4.5 Anthropogenic Disturbance

Man-made infrastructure in permafrost regions is not only 
vulnerable to permafrost thaw induced by climate change, 
but can itself cause thermokarst processes and thereby accel-
erate permafrost degradation (Schneider von Deimling et al., 
2020). The infrastructure in the continuous permafrost zone 
is therefore exposed to a particular risk, as is the sensitive 
landscape, which is threatened by environmental disasters 
such as oil spills from leaking pipelines (Hjort et al., 2018). 
In this study, change pixels were assigned to this change 
class if they were located on newly built infrastructure or 
were clearly affected by it (example shown in Figure B5). 
If new infrastructure was built during the study period, posi-
tive trends of TCB, as well as negative trends in NDVI, TCG, 
NDWI, NDMI and TCW were expected. Change pixels that 
lay on thermokarst features that were apparently induced by 
nearby infrastructure were assigned to the "Anthropogenic 
Disturbance" class and typically showed similar trends as de-
scribed in section 3.4.3.

3.5 Area Estimation of Change Processes

After the classification o f t he 5 0 c hange p ixel i n e ach of 
the regions, the area share of the different change processes 
within the study areas was calculated according to (4).

ACP =
NCP

50
· NC

Ntot
· 100 (4)

ACP is the area share of one change process P in one of the
study areas in %, NCP is the number of change pixels of a
change process, NC is the total number of change pixels in 90

one region andNtot is the study area specific total number of
pixels.

3.6 Change Process Classification

For the classification, area estimations derived from sample
pixels were utilised and then classified with the Random For- 95

est method using the eponymous package in RStudio. Using
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Figure 4. Multi-spectral indices and Tasseled Cap indices for the
decadal trends of the slope and intercept means for the whole study
area. Lena Delta statistics by Nitze and Grosse, 2016 are included
for comparison purposes.

the area estimation sample points means that the final maps
show trend-based classification. This is a useful way of clas-
sifying change pixels as it includes many relatively uncor-
related models which operate together as one large commit-
tee, which outperforms each individual model. It builds an5

ensemble of decision trees, which are then trained with the
‘bagging’ method, which is generally assumed to increase
overall accuracies with a combination of learning models.
Whilst each ‘decision tree’ in the ‘forest’ has its own individ-
ual errors, as a group the forest should show less errors as a10

whole. The chance of greater correct predictions is increased
with the number of uncorrelated trees in the model. Once the
area estimation maps were classified, pixels not representing
a change pixel (as defined in section 3.2.4) were masked out
to produce the final products shown section 4.3.15

4 Results

4.1 Trend Analysis

In order to explain the effect of climate change on the per-
mafrost of these regions, and to have a direct comparison to
the Lena Delta analysis made by Nitze and Grosse (2016), we20

analyzed the vegetation greenness and moisture contents of
the permafrost of these regions with the decadal trends from
the TSR for the period 1999 – 2014.

In the following subsections, change patterns and their
magnitudes are presented and analyzed. The resulting dia-25

grams for all indices help us identify regional change patterns
and behaviors that will further the analysis of the permafrost
of the study area (Figure 4).

Figure 5. NDVI trends of the slope means for the entire study area.

Greening / Vegetation
There is a general greening trend across the entire study 30

area according to the resulting slope means. The TCG index
is similar across all areas of the study region, with a weak
positive trend of 0.011 ± 0.001 and no regional patterns ob-
served. The NDVI shows some regional patterns, with the
eastern regions exhibiting the highest slope means of around 35

0.04 and 0.05, and the highest intercepts between 0.04 and
0.05. This indicates higher greening compared to the west-
ern areas, but that is not the case for the MacKenzie River
which has a slope mean trend of 0.011. (Figure 4 and 5).

Wetness / Moisture 40

NDWI has a negative correlation compared to the NDVI
in terms of slope mean trends for the whole study area. The
TCW has a positive correlation with the TCG, but also a
negative correlation with the NDMI for the western areas.
Its intercept values show a negative trend for all regions, 45

indicating drier surfaces across the whole study area. The
NDMI shows some regional patterns, with the Babbage and
MacKenzie rivers indicating the only positive slope mean
trends (Figure 4 and 6).

Brightness 50

The TCB exhibits some differential behavior, with no re-
gional patterns observed. Four out of seven regions show a
weak positive trend with values less than 0.01, the other three
have a weak negative trend. The intercept shows some re-
gional behavior, with a scaling increase from west to east, 55

though it decreases again for the MacKenzie River (Figure
4).

4.2 Change Processes

The area estimations of the change processes (Figure 7) show
that the most abundant change processes (besides the "no 60

change" class, which mostly occurred due to falsely iden-
tified change pixels on open water areas) in almost all re-
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Figure 6. NDMI trends of slope means for the entire study area.

gions are vegetation encroachment and ice-wedge degrada-
tion, which are considered to be signs of rising tempera-
tures and thawing (Jia et al., 2003; Nitzbon et al., 2020).
Ice-wedge degradation occurred increasingly in regions with
many thermokarst lakes, such as Prudhoe Bay, Colville River5

and the MacKenzie Delta. Greening was especially pro-
nounced in the Barter Island region, Canning River (which
had a very distinct area of greening in the eastern part), as
well as Prudhoe Bay. Erosion and sedimentation processes,
which were mainly found on river banks and at the coast, had10

overall lower area shares between 0.5% and 1% and 0.2% to
1% respectively. With area shares of typically under 0.5%,
lake drainage and anthropogenic disturbance were the least
common change processes. As expected, the largest anthro-
pogenic influence was found to be in Prudhoe Bay, which15

hosts the largest industrial complex in the Arctic (Raynolds
et al., 2014).

4.3 Change Process Classification

The results show a variety of success and failures, which
will be further discussed later. As shown in Figure 8, there20

has been a relatively successful classification of the Canning
River catchment, with very clear examples of island forma-
tion and vegetation encroachment in the eastern region. This
validates the earlier analyses, which showed a general green-
ing of the catchment with a high Tasseled Cap Greenness25

(TCG) value.
Figure C1 shows a partially successful classification of

the MacKenzie River basin. Here, excellent sedimentation
and erosion processes are shown, with the river clearly high-
lighted showing the direction of meander development over30

time. However, artifacts from the satellite imagery have
caused confusion in the classification as shown in the top-
right image.

Figure C2 shows the Prudhoe Bay region and is a good
example of the difficulties of using area estimation points35
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for trend-based classification. As with the MacKenzie River, 
there are problems with artifacts from the satellite which 
have interfered with the classification, here these have been 
identified as anthropogenic disturbance by the classifier. This 
class was poorly classified in general across all of the regions, 
for example in the above figure, the airport at Deadhorse was 
classified as ice-wedge degradation and sedimentation. The 
reasons for these successes and failures will be further dis-
cussed in section 5.3.

5 Discussion

5.1 Trends

There are many factors influencing the trends for permafrost 
changes, including topography, vegetation, hydrology and 
disturbances. These factors vary on different timescales and 
spatial scales (Osterkamp, 2007).

Greening
The summer greening of the study area, which reflects 

on the increasing slope and intercept of the NDVI values, 
would be a process of rising summer air and soil tempera-
tures (Berner et al., 2020), but it is not the sole factor. The 
thermokarst processes over many years, along with the ice-
wedge degradation of the lakes of the western areas may re-
sult in negative NDVI polygon values (Figure 5). Plant pro-
ductivity, which is associated with high summer tempera-
tures and summer precipitation, is still dominant. These neg-
ative NDVI values may also be a result of anthropogenic 
disturbances in these areas, especially Prudhoe Bay, and as 
a result of erosion found along the coastal surfaces of the 
study area, based on the classification. In general, the green-
ing trends agree with the change process classification.

Moisture
The positive trends in the moisture indices on the Macken-

zie river area may be associated, as with the Lena Delta, to 
over-flooding by the rising of the sea-level, especially on the 
north-western coastal side of the area. The western areas ex-
hibit some drying, which may be a result of lake drainages or 
sedimentation according to our classification. Summer pre-
cipitation is an important driver of moisture trends, but it is 
also important to consider the local-scale permafrost thaw 
which may be a factor of increasing moisture (Liljedahl et al., 
2016), so further analysis on a local scale may be required to 
better interpret these trends.

Lena Delta comparison
The only area showing a consistency with the trend val-

ues of the Lena Delta is the MacKenzie River, as they both 
have many similarities in landscape and water distribution. 
In general, our study area and the Lena Delta exhibit similar 
greening in terms of both the TCG and the NDVI, but with no 
clear pattern for the values of the latter. The coastal processes 
show a similarity in their pattern with low NDVI values, in- 85
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Figure 7. The figure shows the area share in % of each of the change classes in the different study regions.

Figure 8. Classification map of Canning River, superimposed on a Google Satellite Hybrid base map, with vegetation encroachment seen
clearly in the east of the catchment.
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dicating possible sediment deposition and erosion (Nitze and
Grosse, 2016). As for the moisture and wetness trends, the
magnitude of the MacKenzie River is negatively affecting
the results towards the Lena Delta. On-field measurements
for inter-comparison are required for a better understanding5

of these trend findings.

5.2 Change Processes

The classification of the pixels, which was carried out with
the help of the tasseled cap and normalized difference in-
dices, as well as the visual interpretation of satellite and10

aerial images in google earth history, is analysed subjectively
and could not be validated due to a lack of ground truth data.
Furthermore, the decision for a certain change class was dif-
ficult in some cases, because processes such as ice-wedge
degradation and vegetation encroachment can overlap and15

occur at the same point. Reasons for points wrongly clas-
sified as change pixels were, among other things, artifacts.
These propagated as detector strips from the Landsat images
to the index trend maps, as well as areas of water which, due
to irregularities such as waves, have triggered strong trends20

in some of the indices.

5.3 Change Processes Classification

As mentioned in the classification results section, the method
of using area estimation points as a base for Random For-
est trend-based classification has both positive and negative25

sides. There are clearly successes shown across the results,
insofar that processes, vegetation encroachment in particular,
are well-classified. The vegetation encroachment matches
the high TCG value for the Canning River, and the sedi-
mentation and erosion processes for the MacKenzie River,30

respectively. The connotations of this could be profound, as
vegetation encroachment may show a melting of permafrost,
allowing either a greater variety of vegetation, or just more
of the current vegetation type to grow in what is normally
a quite barren landscape. As these changes have taken place35

over time, this could provide proof of climate change in the
study area leading to greater vegetation growth on previously
bare landscapes (Jia et al., 2009). On the other hand, the
failures of the trend-based classification method using area
estimation pixels are also apparent. One problematic factor40

was the artefacts produced by the satellite, obscuring the im-
ages used for collecting sample points. These were classi-
fied as outliers or non-change pixels and then masked out
of the image, resulting in large areas which cannot be anal-
ysed. Furthermore, areas of anthropogenic disturbance were45

also poorly classified, the aforementioned example being the
misclassified Deadhorse airport. The main reason for this is
the lack of anthropogenic disturbances across the entire re-
gion in general, resulting in less samples for this class and
therefore greater inaccuracy in using the Random Forest clas-50

sifier. The solution for both of these main failures could be
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as simple as collecting more training points, which should 
provide more examples of anthropogenic disturbance for the 
classifier to recognise, and therefore improve accuracy. This 
should be the first point of any future classification research 
in this area.

6 Conclusions

In this study, we used the Google Earth Engine platform for 
data acquisition and processing, which proved to be an ef-
fective way to create data used in the trend analysis. How-
ever, usage of the pre-built Theil-Sen Regression Algorithm 
made it impossible to study the confidence i ntervals of the 
regression, which would help to make statements about the 
reliability of our results. After working with the API, we are 
however convinced that it is possible to create a custom im-
plementation of the regression which is also able to provide 
these metrics.

Applying the presented methods allowed to identify the 
change processes of the ice-rich landscape. While satellite 
images allowed the visual estimation of change processes, 
the indices provided calculated changes which could be used 
for verification purposes. Change processes on a scale of ap-
proximately hundreds of meters up to several kilometers of 
diameter could be observed in this study.

We were able to confirm the results of Nitze and Grosse 
(2016) about the greening trend in permafrost regions at 
the North American Arctic coast. Furthermore, we identified 
similar patterns of NDVI, TCG and the TCW trends. The 
NDMI on the other hand hints to subtle differences between 
the subregions, as the western regions show a notable nega-
tive trend.

The most prominent identified c hange p rocesses during 
the study period were vegetation encroachment and ice-
wedge degradation, which had the highest area share in re-
gions with many thermokarst lakes. Erosion and sedimenta-
tion processes were mostly found along river banks and at 
the coast, while lake drainage events and anthropogenic dis-
turbances were the least common change processes. Though 
expected that human influences on this landscape would be a 
very minor change process, our results also do not truly re-
flect the extent of what anthropogenic disturbances may have 
actually occurred. This is solely due to the limitations of us-
ing 50 sample points to classify change processes. Future re-
search in this area should focus on collecting more training 
data for more accurate classifications. 95
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Appendix A: Trend Data

Table A1. Statistics of the trends (1999-2014) of all indices including the slopes (mean and standard deviation) and the intercepts (mean) for
the entire study area and the Lena Delta from Nitze and Grosse (2016)

index statistic
Admirality

Bay
Colville

River
Prudhoe

Bay
Canning

River
Barter
Island

Babbage
River

MacKenzie
River

Lena
Delta

TCB Slope Mean 0.0097 0.0056 0.0080 -0.0021 -0.0156 0.0010 -0.0043 0.0168
TCB Slope StdDev 0.0184 0.0178 0.0188 0.0175 0.0146 0.0136 0.0180 0.0139
TCB Intercept Mean 0.2042 0.2327 0.2456 0.2504 0.2711 0.3096 0.1968 0.2910
TCG Slope Mean 0.0119 0.0104 0.0124 0.0102 0.0137 0.0121 0.0105 0.0194
TCG Slope StdDev 0.0095 0.0085 0.0082 0.0089 0.0096 0.0106 0.0167 0.0139
TCG Intercept Mean 0.0129 0.0216 0.0165 0.0221 0.0518 0.1098 0.0541 0.0122
TCW Slope Mean 0.0139 0.0224 0.0184 0.0100 0.0177 0.0144 0.0215 0.0271
TCW Slope StdDev 0.0179 0.0189 0.0195 0.0177 0.0173 0.0118 0.0188 0.0149
TCW Intercept Mean -0.0796 -0.1029 -0.1195 -0.1307 -0.1395 -0.1190 -0.0340 -0.0805
NDVI Slope Mean 0.0204 0.0107 0.0171 0.0243 0.0452 0.0509 0.0116 0.0359
NDVI Slope StdDev 0.0504 0.0499 0.0498 0.0411 0.0382 0.0437 0.0765 0.0323
NDVI Intercept Mean 0.1780 0.2896 0.2550 0.2913 0.4138 0.5594 0.3398 0.4605
NDMI Slope Mean -0.0083 -0.0140 -0.0331 -0.0233 -0.0031 0.0211 0.0229 0.0271
NDMI Slope StdDev 0.0655 0.0611 0.0816 0.0664 0.0664 0.0384 0.0621 0.0413
NDMI Intercept Mean 0.1544 0.0652 0.0254 0.0410 0.0705 0.1913 0.3771 0.0993
NDWI Slope Mean -0.0116 -0.0028 -0.0108 -0.0117 -0.0275 -0.0383 -0.0045 -0.0364
NDWI Slope StdDev 0.0550 0.0503 0.0523 0.0457 0.0374 0.0436 0.0709 0.0302
NDWI Intercept Mean -0.1676 -0.2869 -0.2670 -0.2866 -0.4115 -0.5393 -0.2806 -0.4102
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Appendix B: Change Process Examples

Figure B1. The figure shows multiple ongoing erosion and sedimentation processes at Colville river between 2005 and 2014 (Basemap:
Google earth V 7.3.3.7786. (July 26, 2005 & August 27, 2014), http://www.earth.google.com [October 28, 2020]).
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Figure B2. The figure shows an area identified as greening/vegetation encroachment between 2005 and 2014 in the Colville river region
(Basemap: Google earth V 7.3.3.7786. (July 13, 2005 & August 27, 2014), http://www.earth.google.com [October 28, 2020]).
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Figure B3. The figure shows ongoing ice-wedge degradation at a site in Admirality Bay between 2002 and 2011. In 2011 the polygon
structure is much more prominent and water seems to be pooling in the polygons (Basemap: Google earth V 7.3.3.7786. (July 31, 2002 &
June 18, 2011), http://www.earth.google.com [October 28, 2020]).
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Figure B4. The figure shows a lake drainage event between 1999 and 2014 at a site in the Babbage river region (Basemap: Google earth V
7.3.3.7786. (December 31, 1999 & December 31, 2014), http://www.earth.google.com [October 28, 2020]).
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Figure B5. The Figure shows the extension of man made infrastructure from 2005 to 2009 at a site in Prudhoe Bay (Basemap: Google earth
V 7.3.3.7786. (June 25, 2005 & May 20, 2009), http://www.earth.google.com [October 28, 2020]).
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Appendix C: Classification Examples

Figure C1. Classification map of the Mackenzie River, superimposed on a Google Satellite Hybrid base map, with good (top left) and poor
(top right) classifications shown.

Figure C2. Classification map of Prudhoe Bay, superimposed on a Google Satellite Hybrid base map, and a zoomed in image highlighting
classification issues with Deadhorse Airport.
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Appendix D: Programming Code

Code for preprocessing in Google Earth Engine is available at
https://code.earthengine.google.com/?accept_repo=users/geograffr/eo_2020_permafrost

D1 R: Trend Analysis

Listing 1. Library Loading and Static Data
library(raster)
library(stringr)
library(dplyr)
library(tidyr)

data.dir.1999 = "../trends"

index.labels = c("TCB", "TCG", "TCW", "NDVI", "NDMI", "NDWI")
region.labels = c("AdmiralityBay", "ColvilleRiver", "PrudhoeBay", "CanningRiver",

"BarterIsland", "BabbageRiver", "MacKenzieRiver" , "LenaDelta")

lena.delta.df <- data.frame(
region = "LenaDelta",
epoch = "1999-2014",
index = index.labels,
slope.mean = c(0.0168, 0.0194, 0.0271, 0.0359, 0.0271, -0.0364),
slope.stdev = c(0.0139, 0.0139, 0.0149, 0.0323, 0.0413, 0.0302),
intercept.mean = c(0.2910, 0.0122, -0.0805, 0.4605, 0.0993, -0.4102)

)

Listing 2. Trend Extraction and Statistics
stats.FUN = function(trendfile, watermask) {

raster.stack <- stack(paste0(trendfile))

# reproject watermask if necessary:
if(proj4string(raster.stack) != proj4string(watermask)) {

watermask = projectRaster(watermask, raster.stack, method = "ngb")
}

raster.stack.masked <- mask(raster.stack, watermask, maskvalue = 1)

data.frame(
index = str_match(trendfile, "STtrend_([A-Z]+)_")[,2],
slope.mean = cellStats(raster.stack[[1]], mean) * 10,
slope.stdev = cellStats(raster.stack[[1]], sd) * 10,
intercept.mean = cellStats(raster.stack[[2]], mean),
stringsAsFactors = F

)
}
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3. Data File Parsing and Water Mask Extraction
calculate.subregions = function(subfolder ,data.dir, epoch) {

region.name = str_match(subfolder, "^([A-Za-z]+)(_|$)")[,2]
subregion.data.folder = paste0(data.dir, "/", subfolder)

if( region.name == "BabbageRiver" && epoch == "1999-2014") {
subregion.data.folder = paste0(subregion.data.folder, "/Data/processing_test")

}

region.data.files = list.files(
subregion.data.folder,
glob2rx("STtrend_*.tif"),
full.names = T)

if( length(region.data.files) < 1 ) {
stop(sprintf("No file found for ’%s’ in folder ’%s’",

region.name, subregion.data.folder
) )

}
# load the 95perc rasters and create a watermask by
# using the 95th percentile of the NDWI (band 1) with a positive value:
watermask.file.name = subfolder

perc.file = paste0("../watermask/", watermask.file.name, "_perc95_", substr(epoch, 1,4)
,".tif")

perc.raster = raster(perc.file, band = 1 )
watermask = perc.raster > 0
watermask.stats = freq(watermask, useNA = "no")
watermask.fraction = data.frame(watermask.stats) %>%

filter(value == 1) %>%
pull(count)/sum(watermask.stats[,2])

message(sprintf( "applying watermask (%.1f%% masked pixels)", watermask.fraction*100 ))

results = lapply( region.data.files, stats.FUN, watermask = watermask ) %>%
bind_rows() %>%
mutate(region = region.name, epoch = epoch, .before = 1) %>%
mutate(watermask.fraction = watermask.fraction)

return(results)
}

Listing 4. Master Processing and Data Concatination
subfolders = list.files(data.dir.1999, pattern = "^[A-Za-z]+(_[0-9]+)?$")
epoch.results.1999 = lapply(subfolders, calculate.subregions, data.dir.1999, "1999-2014") %>%

bind_rows()

all.results = epoch.results.1999 %>%
bind_rows(lena.delta.df) %>%
mutate(

index = factor(index, levels = index.labels),
region = factor(region, levels = region.labels),
epoch = as.factor(epoch)

)

all.results %>% filter(epoch == "1999-2014") %>%
select(-c(epoch, watermask.fraction)) %>%
pivot_longer(cols = c(slope.mean, slope.stdev, intercept.mean)) %>%
arrange(index, region) %>%
pivot_wider(names_from = region)




